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DESCRIPTION: This extension allows you to conduct Simple and Multiple Linear Regression analyses
for both tabular and grid data. Regression can be conducted with fields in a table or between grid
datasets. This extension also gives you the ability to calculate a wider range of summary statistical data
than that available in the standard ArcView interface, and the power to generate probability values and
critical values from a wide range of statistical distributions.

Linear Regression on Themes and Tables: This function uses Least Squares methods to calculate
the linear relationship between one or more independent Predictor variables and a dependent Response
variable. Predictor and response values are drawn from fields in an ArcView table or a point/line/polygon
theme feature attribute table.

Linear Regression on Grids: This function calculates the linear relationship between one or more
grids of predictor values and a grid of response values, again using Least Squares methods.

E Summary Statistics: From any numeric field in a table, this function will calculate the mean,
standard error of the mean, confidence intervals, mode, minimum, 1st quartile, median, 3rd quartile,
maximum, variance, standard deviation, average absolute deviation, skewness (normal and Fisher’'s G1),
kurtosis (normal and Fisher’'s G2), number of records, number of null values, and total sum.

EI Probability Calculators: This function will allow you to calculate the probability, cumulative
probability and inverse probability (i.e. given a cumulative probability, calculate the corresponding critical
value) of a wide range of statistical distributions, including the Beta, Binomial, Cauchy, Chi-Square,
Exponential, F, Logistic, LogNormal, Normal, Poisson, Student’'s T and Weibull distributions. This
function is available as a general calculator that remains open until you are finished with it, or as a Table
tool that performs the calculations on all selected records in a table.

Acknowledgments: Version 1 of this extension was originally developed for the Inland Water Resources
and Aquaculture Service (FIRI) of the United Nations Food and Agriculture Organization (FAO), for use in
a training program to teach managers how to utilize GIS technology when managing fisheries. See
Geographic Information Systems in fisheries management and planning. Technical manual, by G. de
Graaf, F.J.B. Marttin, J. Aguilar-Manjarrez & J. Jenness. FAO Fisheries Technical Paper No. 449. Rome.
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of FAO, and Gertjan de Graaf of Nefisco Foundation, for their assistance in developing the Grid Regression
tools.
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Certain tools (esp. the Field Statistics and the histogram) were originally developed by the author for the
University of Arizona’s Saguaro project (see http://saguaro.geo.arizona.edu/) and are included here with
their permission. The author thanks Larry Kendall of the University of Arizona, and Scott Walker of
Northern Arizona University, for their help in developing those tools and their willingness to share them.
The Theme and Table Regression tools were originally developed for the FAO-FIRI African Water
Resource Database project, and portions of this manual are adapted from the documentation for that
project. The author gratefully acknowledges the assistance of Joe Dooley of Spatial Data Services &
Mapping (Namibia), and José Aguilar-Manjarrez and Claudia Riva of FAO for their assistance in writing
and editing that manual.

The Statistical Probability tools are almost identical to those in the author’s Statistics and Probability
Tools extension (see http://www.jennessent.com/arcview/stats dist.htm) and are included because they
enhance and complement the regression functions. The manual for that extension has also been
adapted into this manual.

REQUIRES: ArcView 3.x, Spatial Analyst

This extension also requires that the file "avdlog.dll" be present in the ArcView/BIN32 directory (or
$AVBIN/avdlog.dll) and that the Dialog Designer extension be located in your ArcView/ext32 directory,
which they usually are if you're running AV 3.1 or better. The Dialog Designer doesn't have to be loaded;
it just has to be available. If you are running AV 3.0a, you can download the appropriate files for free
from ESRI at:

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetalD=483
REVISIONS: See p. 93

Recommended Citation Format: For those who wish to cite this extension, the author recommends
something similar to:

Jenness, Jeff. 2006. Grid and Theme Regression 3.1e (grid_regression.avx) extension for ArcView 3.x.
Jenness Enterprises. Available at: http://www.jennessent.com/arcview/regression.htm.

Please let me know if you cite this extension in a publication (jeffi@jennessent.com). | will update the
citation list to include any publications that | am told about.

Copyright © 2005 - 2006
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General Instructions:

1) Begin by placing the "grid_regression.avx" file into the ArcView extensions directory
(../..JAv_gis30/Arcview/ext32/).

2) After starting ArcView, load the extension by clicking on File --> Extensions... , scrolling down
through the list of available extensions, and then clicking on the checkbox next to the extension called
"Grid and Theme Regression."

3) This extension will add 4 buttons to your View button bar:

Linear Regression on Feature Themes

Linear Regression on Grids

C. Probability Calculator
d. Field Statistics
4) This extension will also add 3 buttons to your Table button bar:
a. Probability Calculator
b. Field Statistics

Linear Regression on Table Fields

C.

5) This extension creates 2 new document types in your project (Reports and Scatterplots), each of
which contains tools for functions within that document type.

Report

Describe Model Predict new observations with model

Scatterplot

D
Describe Model Change Y-Axis Attributes of Scatterplot
- onsui 5] i
Predict new observations with model Change Description of Scatterplot
@ Change Text Attributes of Scatterplot Refresh Scatterplot

X . .
Change X-Axis Attributes of Scatterplot




All models are wrong but some are useful.
George E.P. Box

Linear Regression

There are many good texts that cover linear regression in great depth, and the author highly recommends
Applied Regression Analysis (3rd ed.) by Draper and Smith (1998), and Applied Linear Statistical Models:
Regression, Analysis of Variance and Experimental Design (4th ed.) by Neter et al. (1996) for a proper
understanding of how it all works. | will touch on only the basic concepts here.

History of Regression:

Linear regression provides users with a powerful method for analyzing relationships between data. The
history of this technique dates back to 1875 when Sir Francis Galton (1822-1911) observed that
subsequent generations of pea plants tended to have less extreme sizes than the previous generations,
noting that the offspring of exceptionally large peas tended to be smaller than their parent while the
offspring of exceptionally small peas tended to be larger then their parent. The net effect of this
phenomenon was to bring the pea population closer to the mean pea size, and Galton used the term
“regression” to describe this effect. The natural tendencies of many biological processes are to move
away from extreme events and therefore to “regress” to the mean.

Galton did not come up with the mathematical formulas and techniques currently used in most linear
regression analyses, however. Galton based his analyses on medians and inter-quartile ranges, possibly
not recognizing the statistical advantages of means and standard deviations (see Stanton 2001), but he
did recognize the importance of the slope of the best-fitting line and the correlation between variables. In
the late 19" and early 20" century, Karl Pearson (1857-1936) provided rigorous mathematical methods
and proofs, incorporating the methods of least squares (originated by Adrien-Marie Legendre [1752-1833]
and/or Carl Friedrich Gauss [1777-1855]) and the formulas for correlation from Auguste Bravais’ (1811-
1863), to give a solid mathematical foundation to regression (Denis 2000). The mathematical methods
were further refined by R.A. Fisher (1890-1962) in the 1920s (Salsburg 2001).

What This Extension Does:

This ArcView extension has been specifically designed to allow a user to conduct simple linear regression
analyses (with a single “independent” or “predictor” variable) or multiple linear regression (with multiple
independent variables) and lets the user apply several possible transformations to the predictor variables.
These types of regression allow the user to identify whether a dependent variable varies in a predictable
way over a range of values of the independent variables. For example, regression analysis could tell a
user whether fish stocks tend to rise or fall as nutrient levels in the water rise and fall, and can quantify
the linear relationship that may exist between fish stocks and nutrient levels. In addition, the analysis also
provides users with the probability that any relationship established is due solely to chance. Once such a
relationship has been established, it can be used to explain how much of the variation in fish stocks is
due to nutrient levels, and to predict what the fish stock might be at some particular nutrient level.

Simple linear regression refers to the most basic type of regression, with a single dependent variable and
a single independent variable. Multiple linear regression refers to cases with multiple independent
variables, including higher-order models (where the parameters are different exponential values of the
same variable).

Despite the variable names (“Independent” and “Dependent”), regression analysis is not intended to
demonstrate causal relationships between the dependent and predictor variables. Just because the
dependent variable varies in a predictable way over different levels of the independent variables does not
necessarily imply that the predictor variable causes the variation. In the above example, one cannot say
with any certainty that nutrient levels cause the fish stocks to be at certain levels even if a strong
correlation was found. It is possible that both variables may actually be influenced by some third variable,
such as precipitation, population density, climatic factors, or even some combination of variables, and that
fish stocks and nutrient levels both fluctuate in response to these other factors. True causal relationships



can only be established through controlled experiments where the causal relationship is being specifically
tested and measured. However, this does not diminish the value of the correlational relationships that can
be identified using regression.

Method of Least Squares:

This extension uses the Least Squares method to generate the best-fitting line for a dataset. This method
minimizes the total squared deviation of each sample point from the best-fitting line. For example, given
a sample dataset:

There is a unique best-fitting line that minimizes the total vertical distance from each sample point to that
line. The best-fitting line is drawn through the cloud of points in the illustration below, and gray lines
represent the distances from each point to that line. The distances represented by the gray lines are

often referred to as Errors (¢, ) or Residuals.

|-

"1 )

This line is just one of an infinite number of possible lines. However, this line is unique in that, if the error
value of each point is squared, and all squared errors are summed up, then this line has the smallest total
error possible. Any other line drawn through these points would have a higher total error, and therefore



this line is considered the best-fitting line. If we wish to say that these points follow some linear pattern,
then this line is the best descriptor of that linear pattern. If we wanted to predict what the Y-value of some
new point would be, based on some X-value, then this line would be the best tool to use to make that
prediction.

Assumptions of Linear Regression:

Like most statistical analyses, linear regression requires certain assumptions to be met in order for the
output to be valid. These assumptions are:

1) The expected error E(gi ) = 0, meaning that the regression line is the best predictor for the

dependent variable. The Least Squares method produces a regression function that satisfies this
assumption. This assumption also allows us to drop the error term (g) from the estimated

regression function.
Population function: Y = g, + X +¢
Estimated Function: Y = j, + 3,X

2) The variance of ¢ is constant over the range of independent values. In other words, the cloud of

points in the scatterplot should maintain approximately the same vertical spread about the
regression line over the range of independent values.

3) The sample points are independent. You should not be able to predict one response value based
solely on another response value. This assumption is often violated when regressing spatial data
due to spatial autocorrelation, but this does not mean the regression is useless (see A Warning
About Regression with Spatial Data on p. 53).

Estimation Uncertainty:

We generally like to know both the regression function that best fits our data, plus the uncertainty
associated with the various parameter estimates. There are several measures of uncertainty that can be
derived using least squares methods:

R% Also known as the Coefficient of Multiple Determination, R? is a numeric measure of how much of the
variation in the resgonse variable (in the Y-axis) can be explained by variation in the predictor variable(s).
For example, an R“ = 0.8 would mean that 80% of the variation in the response variable can be explained
by the predictor variable(s).

Some researchers prefer a modified form of R* which is standardized based on the sample size and
degrees of freedom (Adjusted R?; see p. 22)

Confidence Intervals: All of the parameters in the regression equation are estimates based on the
sample data. These terms are random variables, and the least squares method assumes they are
normally-distributed random variables, and therefore we can estimate confidence intervals based on the
variance of each parameter. When viewed on a scatterplot, these confidence intervals produce
confidence bands above and below the actual regression line.

Examples of these concepts are presented on p. 21 of this manual.

Different Datasets Require Different Models:

The most common type of regression involves fitting a straight line to your data, similar to the illustration
above. This is an easy relationship to display and explain and it often works well at describing the
relationship between predictor and response variable. However, it is only appropriate if there really is a
straight-line relationship in your data. Data often follow different patterns, and sometimes more complex
models are more appropriate.



This extension allows you to automatically perform several transformations on your predictor variables to
create more complex models. All of these options are considered “linear” regression even though only
one model produces a straight line. They are considered “linear” because the parameter estimates are all
linear. There are many other types of regression available, including nonlinear regression, which you can
review at your leisure in a good regression textbook (Draper and Smith [1998] and Neter et al. [1996], just
to name two of the author’s favorites).

Higher-order models in particular are curved, but linear regression can fit these models because the
parameters (4 values) are linear.

1st-Order Model 2nd Order Model
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Terminology: There is a difference between the population model and the estimated regression fit.
Assuming that there is a true relationship between variables, this relationship is described by the
population g parameters in the model. However, we will never know what the actual population
parameters are because we can never measure all members of a population. We must be satisfied with
estimating those population parameters based on a sample of that population. In this manual, estimates
of the population parameters will have little hats on them:

YA = ﬁo + /;71)(
Actual population parameters will not have hats:
Y=8+BX+¢

This extension allows you to generate linear models using inverse, natural log, exponential, 2" and 3"
order transformations of your predictor variables. For example, suppose you made a scatterplot of your
data and it looked like the following:
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There is a visually obvious trend here where Y increases gradually at low levels of X, then increases
rapidly for a bit before leveling off at high levels of X. A straight-line relationship would only be accurate
over short distances. In this case a more complex model might be more appropriate.

This extension allows you to build complex models with multiple predictor variables and multiple
transformations. It would be worth your time to familiarize yourself with the way different models behave
in order to decide which model might be most appropriate for your data. As a general guide, the following
pages illustrate how 6 basic models perform with five simulated datasets.

This extension provides tools to build models based on 6 basic transformations (see p. 16). All of these
transformations are applied to the predictor variable(s). If you would like to build a model using a
transformation of the response variable, you can easily transform the variable yourself prior to running the
regression analysis (see Manually Transforming Data on p. 55).

The 6 basic transformations include:
1°“order Model (straight line): Y = 3, + X
Full 2"-order Model (Quadratic Polynomial): Y = 3, + X + 3, X?

Full 3“-order Model (Cubic Polynomial): Y = 3, + BX + B, X% + B, X°
e
Inverse: Y =g, +'31Y
Logarithmic: Y = 3, + 3,In X

Exponential: Y = 3, + e~

This extension provides tools to build a model including any or all of these transformations.

-10 -



Response Follows Linear Relationship:
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Sample Data Points
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-11 -

R? = 0.761.
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Response Follows Exponentially Increasing Curve:
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Response Increases and Reaches Plateau:
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Response Follows S-Shaped Curve:
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Sample Data Points
Regression Line

95% Confidence Bands

Model: Y = BG +,[§|X+

R? (Adjusted)= 0.836

Model: Y = 3, + §, (%J

5
R? (Adjusted)= 0.853

Model: Y = 4, + 4 In(X)

R? = 0.838I R? = 0.903I

R? (Adjusted)= 0.900

Model: Y = j, + S e*

R? (Adjusted)= 0.002

R? (Adjusted)= 0.688
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Response Follows Inverse S-Shaped Curve:
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Sample Data Points
Regression Line

95% Confidence Bands

Model: Y :,Z%O +B|X+

3“)(3 +'3JHXA

R? (Adjusted)= 0.790 R? (Adjusted)= 0.810

Model: ¥ = 4, + 4 (L]

% Model: Y = 4, + 4 In(X)

R LS .
R*= 0.79Iz R? = 0.815I R? = 0.886

R? (Adjusted)= 0.882

Model: Y = j, + . e*

R? = 0.149
R? (Adjusted)= o0.140

r R? = 0.610
R?* (Adjusted)= 0.606
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Linear Regression for Themes and Tables:

The Theme and Table Regression Tool is opened by clicking on the I==1 button in either the view or table
button bar. This tool allows users to conduct linear regression analyses between numeric fields in a table
and examine the values in these fields for any correlation. The regression tool will either analyze all of the
records in a table or only those records that lie within the currently selected set.

Overview:
il Regression Dptions: ) i‘
- Pleaze select Theme - Pleaze zelect 1 or more Fleaze zelect a single
Gridh vlies70 g [GHID-I::E_*_J - Indepepﬁlanlagstfpredlctur - - Dependef?;i-"dﬂespunse -
Gnd_wvaluesh3.zhp [GRID-bs Pairid ﬂ Pointid :I
Gnd_wal_regrezz_10.zhp Hipierde deperiden

Gnd_wval_regresz_9.zhp
Gnd_waluezE3. shp [GRID-be

prECip_ran prEcip_ran

Anh_precip Anr_precip

Resol.zho :J E

haripienn van] = Define Madel | 2]
2]

B0 + B1*[Ann_precip]

s

QUTRUT OPTIOMS:
¥ Descriptive statistics Options | ¥ F-Squared

@ ANDWA Table Helg
¥ Confidence Interval for Parameters W Save Predicted Walues Carcel
Confidence Level: 0.495 [T Save Fesiduals
[T Sawe Stand. Residuals ot
[+ Confidence Bands around Model [# Scatterplot
Sanfgengetexs. I 0.35 [+ Seguential Sums of Squares

If this tool is opened from a View, the user will see a list of themes in the listbox on the left. When the
user selects a theme, the Independent and Dependent Variable listboxes will fill with lists of that theme’s
numeric attribute fields. If this tool is opened from a Table, the “Theme” listbox will only show the current
table and the variable listboxes will automatically fill with the current numeric fields.

Output options associated with this tool are extensive and include the basic R? an ANOVA table with both
the F-values and P-values; basic and standardized residuals; a large variety of descriptive statistics;
parameter estimate variability; confidence intervals; predicted values; a scatterplot; and a table of
sequential sums of squares.

Defining a Model:

Linear regression finds the best-fitting line by fitting the estimated parameters to some pre-specified
model. These models can take many forms and this extension provides a means to fit some of the more
popular ones.
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If you simply wish to fit your data to a set of predictor variables, just select them in the list of
Independent/Predictor fields. The model will appear in the textbox window as you select the values. If
you wish to develop a more sophisticated model, first select all the independent variables you wish to
include and then click the “Define Model” button to open the model builder dialog:

! Define Regression Model: ﬁl

Fredictor Yariables [V] : Delete Terms |
re— LI Responze [precip_ran] =

BO + B1+[1/precip_ran] + B2*[&nn_precip™3] + -
B2 Anm_precip™2]

-

15t-Order Model | 2nd-DrderMndeI| SidGirder Model |

Ly v v

|
|

I 1w " In(v) ]l.'*m Help | Cancel | ] 4 | Y

To add a term to the model, first select that term in the list of Predictor Variables on the left, then click the
appropriate button to add the term with the associated transformation. At this point, you can generate
models with 1%, 2™ and 3"-order terms, and inverse, natural log and exponential transformations. The
Buttons for 1%-order Model, 2"-order Model and 3"™-order Model will automatically generate a full model
containing all predictor variables at all levels. For example, clicking on the 3™-order Model button with the
two predictor variables above would automatically generate the following model:

Y = j3, + A[precip_ran]+ 3, [precip _ran]? + A, [precip _ran]’ +
A,[Ann _ precip] + 4,,[Ann _ precip® + f3,,,[Ann _ precip]®
You can delete existing terms by clicking the “Delete Terms” button.

il Delete Terms: . x|

Flease select the terms to delete from the model...

# Define Regression Model:

Fredictor Yariables [V]
precip_random

Responze [Mean_air_temp] =
. B0 + B1*[precip_random] + B2*[prechs
Ann_precip B3 [precip_random ™3] + B4*[Ann_precip] +
BS[Ann_precip”2] + BEl4nn_precip™3]

| v

B1*[precip_random] =
B2*[precip_random™2]

B3*[precip_random™3]

Bd®Ann_precip]

BE*[tn_precip”™2]

Istrder Model | 2ndOrcler Mode! | 3rc-Orcder Modl | BEArn_precin”3]

Ll

Help | Cancell Ok | ,-/§

-

IMPORTANT: You should take care to make sure that any transformations you perform are appropriate for
your data. For example, do not attempt to perform a natural log transformation on data that contain
negative numbers, which is impossible to do without using imaginary numbers. This regression tool does
not work with imaginary numbers, and you will likely get an error message stating that you encountered a
singular matrix error (see Troubleshooting on p. 90 for more details).

Additional Statistical Options:

This tool provides a wide range of statistical output associated with simple linear regression, as well as
general descriptive statistics on the dependent and independent variables. The general descriptive
statistics are available by clicking on the “Descriptive Statistics” box and then clicking the “Options”
button:
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! Summary Sktatistics: ﬂ

tearn: Scale:
¥ (Mean: ¥ ‘“anance

¥ Standard Dewiation

v Average Deviation

[v Std. Emor of Mean

[ Conf. Limitz for Mean EhApE
LCanf Level I ¥ Skewnesz
¥ Skewness [Fisher's G1]

Quarties and Rangs: ———— | ™ Furtosis
¥ Kurtosis [Fizsher's G2]

W Minimum
¥ First Quartile Cther Statistics:
v Median IV Mode
v Murmber of B
¥ Third Quartle v s ok Hows
= v Mumber of "Mull' % alues
W b
S v Total Sum
v Range [ Histograr
Cancel | Help | k.

Brief definitions and descriptions of the functions used to derive the above summary statistics for the
regression tool are provided in the discussion of Field Summary Statistics. At this point, the “Histogram”
function is disabled for regression analyses.

Regression Report and Output Options:

In all cases, this tool will produce a regression report detailing all the output options that were selected.
This report will automatically be saved to the hard drive and opened in a text window for the user to
review.

Optionally, a user may also choose to generate a scatterplot illustrating the regression relationship. If so,
this scatterplot will open in a new document type called 'Reg. Plots', which is likely located beneath your
'Reports' document type in your project window. The scatterplot will be named 'Scatterplot of [Response
Field Name] over [Predictor Field Name]'. Points are generated from the Response and Predictor values
by plotting the Predictor value of each feature on the X-axis and the Response value of that feature on
the Y-axis. The point data and regression line are presented as themes in the Scatterplot view.
Scatterplots are described in detail on p. 33.

If the user elects to generate confidence bands, predicted values, residuals or standardized residuals,
then the tool will also produce a new theme in the active view which will be identical to the input theme
except that it will also contain fields for these additional values. The name of this new theme will be the
same as the input theme, appended by “_regress”. The input theme will never be altered by using this
tool, and any predicted values, residuals or confidence levels for the selected set will be added to this
new “regression” theme.

The various output options of this tool can be illustrated by running a sample regression analysis
investigating a potential relationship between Mean Annual Air Temperature [Air_temp] and Mean Annual
Precipitation [Precip] for a region along the west coast in central Africa. A scatterplot will also be created,
as will the full range of output options by setting up the regression tool as follows:

-18 -



] sample Points r;

.
| Mean_aii_temp
| Presip_ann

o Africa_baskgraund_2 tif

I Regression Options:

- Please select Theme - Please select 1 or mare Please select a single
- Independent/FPredictor - - Dependent/Responge -
Fields field

Pointid = Paintid A

Precip Precip
Air_temp

Prec_rand
Ih_precip In_precip

Y-hat [Air_temp] =
B0+ B1*[Prec_rand] + B2 Prac_rand™2]

OUTPUT OPTIOMS:

v Desciiptive stalistics  Options I R-Squared
v ANDYA Table

¥ Confidence Interval for Parameters [ Save Predicted Values
Confidence Level: Iw ¥ Save Residuals
¥ Save Stand. Residuals
¥ Scatterplot

v Confidence Bands around Model

Confidence Level: 0.95

¥ Sequential Sums of Squares

Ll

As soon as the tool finishes, the new “regression” theme will be added to the view, a scatterplot will open,
and a regression report will appear. The regression equation, as well as any additional statistics you
choose to generate, will open in a new document type called a 'Report’, and which should be located

beneath your 'Layout’ document type in your Project window. These reports will be saved when you save
your ArcView project.
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|
Model and ANOYA Table_d42 =] B3

\ | ml
~~|  REGRESSION RESULTS |
\ I

DATA SOURCE: Sample Points
DEFENDENT DATA: Air_ temp
INDEPENDENT DATA: [Precip]. [Frecip®Z]

New Thene with Regression Values added to wiew:
——3» Theme NHame = Sample_p_regress.shp
——>3 Location = ciesrihav_gisilharcviewsl_jeffscriptshconsultationunited_nations regression~data~Sanple P regress. shp

Fields Created and Added to Table:
——3 Predicted Values: Field = [Y-Hat]. Alias = Y-Hat (Predicted Values)
——>» Residuals: Field = [Residuals]., Alias = Residuals
——3» Standardized Residuals: Field = [stan_res]. Alias = Stand. Residuals
——3» Lower 95% Confidence Lewel: Field = [LCL 95]. &lia= = Lower 95% Con. Level
——>» Upper 95% Confidence Lewel: Field = [UCL_95]. Alias = Uppesr 95% Con. Level

DESCRIFTIVE STATISTICS:

——— AIR TEMP [Dependent-Response] ——
Hean: 24.472223565891

Standard Deviation 0.787599081928
Total Records: 645

Humber of Hull Walues: 0O

——— [FRECIF] [Independent Fredictor] ———
Hean: 1811.961240310078

Standard Deviation 290.872915279473
Total REecords: 645

Humbsr of Hull Waluss: 0

——— [PRECIP"2] [Independent- Predictor] ——
Hean: 3367679.415503875800

Standard Deviation 1333070.419985390700
Total Records:

Humber of Hull Walues: 0

Fegression Model = B0 + Bl®[Precip] + B2#[Precip™2]
Fegession Equation:
Y-hat = 29.9122392 — 0.0049034%[Precip] + 0.0000010%[Precip”2]

Parameter Cosfiicients:

| 95% CI
Cosfficient | Value | Std. Error | t-Value | P (:|t|) | Lower | Tpper
[Intercept] 29.912239239 0.7779889121 38.448156 0.00000000 28.3845289 31.4399495
[Frecip] —0.004903371 0.0007132174 —6.875001 o.oooo00000 —0.00623038 —0.0035028
[Precip”™2] 0.ooo00010228 0.0000001556 6.5727769 o.ooooo000o 0.00000071 0.00000132

P-values calculated on t-distribution with 642 df.

Coefficient of Hultiple Determination (E-Squared):
——>» R-Sguared = 0.071999
——>3 Adjusted R-Sguared = 0.065108

ANOVA Table
Dependent Grid Air temp

Df Sum of Sg

Hean Sg

F-Valus P-Valus

Regression 2 28.762 14.3811909 24.9049303 0.0000000
Residuals 642 370.719 0.5774435

Total 644 399.481

Sequential Sums= of Sguares: *®

Dependent : Air_temp

Coefficient | DF | Sum Sg. | Mean S5 | F | P #*x | RB-Sguared ==
[Precip] 1 3.81601 3.81601 6.60846 0.0103737 0.0095524

[Precip”™2] 1 24,9463 24 9463 43 .2014 0.0o00o0oo 0.0719994

REesiduals 642 370.718 0.57744

Hotes:

* Thi= table reflects the Sums of Sguares explained by adding each parameter into the
mnodel, in the order they appear in the model.
** P-values calculated on F-distribution with 1. 642 df.
#x% BE-Squared waluess reflect multiple correlation coefficient of all paramsters entered
into the model up to this point.

Analy=is Began: August 10, 11:35:56 AM
Analy=i= Complete: August 10, 11:36:04 AM
Tine Elapzed: 8§ =seconds. ..

4 [
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Model and Parameter Estimates:

#! Model and ANDYA Table_3

Regression Model = BO + BEl®[Precip] + BZ#[Precip”2]
Reges=sion Equation:
Y-hat = 29 9122392 — 0.0049034%[Precip] + 0.0000010%[Precip™2]

Paranster Coefficients:

| 95k CI
Coefficient | Yalue | Std. Error | t=Valus | P (x|t]) | Lower | Toper
[Intercept] 29.912239239 0.7779889121 38.448156 < 0.00001 28.3845289 31.4399495 J
[Frecip] —0.004903371 0.0007132174 —6. 875001 < 0.00001 —0.0063038 —0.0035028
[Precip™2] 0.oo00o0in02z28 0.0000001556 6. 5727769 < 0.00001 o.ooooo0?1 0.oo0oo13z
P—walues calculated on t-distribution with 642 df. -
4| | v

In all cases the regression report will include the regression equation, containing the parameters that best
fit the data to the model. In simple linear regression, this equation will be based on the straight line model:

Y=06+FX+¢
where “Y” is the dependent variable, “X” is the independent variable, £, is the parameter estimate of that

variable (i.e. the slope) and g, is the y-intercept of the line. The example illustrated in the report window
above fits the data to a 2"-order polynomial model:

Y =B+ BX+ B X +e

and therefore parameters must be estimated for the y-intercept ( 4, ), Precipitation ( 5,) and Precipitation’
(Bi)-

The entire regression equation can then be used to predict new values of y based on values of x. For
example, a user might be interested in predicting what the mean annual air temperature might be if an
area received 2600 mm/yr of precipitation. Based on this equation, the best estimate of mean annual air
temperature would be calculated as:

y = 29.9122392 - 0.0049034 2600) + 0.000001( 26007 )

= 23.9 Degrees Celsius

For more information on using your model to predict new observations, please review the discussion on
Predicting New Observations on p. 43.

Confidence Intervals for Parameter Estimates: This option produces a variety of statistics regarding the
parameter estimates, including several measures of the variability and uncertainty of each estimate.
Selecting this option will provide the user with values for the parameter, the parameter standard deviation,
and the upper and lower confidence limits based on the confidence level specified.

One important use of these statistics is to confirm whether there really is a relationship between the
independent and dependent variables. If the parameter were equal to O (i.e. a perfectly flat slope), then
the dependent variable would not change at all as the independent variable changed and therefore there
would be no relationship between them.

This value is considered an “estimate” because it is generated from a sample of precipitation values
rather than the full population of all possible precipitation values. We would like to know the true
population regression parameter value but it is rarely possible to measure the entire population, and
therefore we have to accept an estimate of the slope based on a sample of the data. This is one of the
fundamental foundations of statistics.

The confidence limits of the parameter estimate tell us how confident we are about our estimate. Our
95% confidence intervals should be interpreted to mean that, if we took an infinite number of samples of
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air temperature and annual precipitation, then the true population regression parameter (the one that we
are really interested in) would lie between the upper and lower confidence limits 95% of the time. In this
case, we can take this to mean that there is approximately a 95% chance that the true population
parameter for g, (Precipitation) lies within the interval [-0.0063, -0.0035], and our best estimate of it is

-0.0049. Likewise, our best estimate of 3, (Precipitationz) is 0.000001, and there is a 95% chance that

the true population parameter lies within the interval [0.00000071, 0.00000132]. If either confidence
interval contained 0 within its bounds, then this would be evidence that there may not be any relationship
at all between this variable and the annual air temperature.

R-Squared and ANOVA Table:

#! Model and ANDYA Table_3

Cosfficient of Hultiple Determination (RE-Sguared):
——>» RE-Sguared = 0.071999
——3» Adju=sted FE-Sguared = 0.069108

ANOVA Table

Dependent Variable Field Name: Ailr temp

Df Sum of Sg Hean Sg F-Values P-Values
Regres=sion 2 28 762 14.3811909 24.9049303 < 0.00001 -J
Residual= B4z a70.719 0. 5774435
Total 644 399,481

-
1| | »

R-squared: Also called the Coefficient of Determination, this value is a measure of how much of the
variability in the dependent variable can be explained by the variability in the independent variables. In
the above example, an R? value of 0.072 indicates that only 7.2% of the variability in the dependent
variable Annual Precipitation can be explained by variation in the independent variable Mean Annual Air
Temperature. This tells a user that they should be very hesitant about predicting annual air temperature in
a particular area based only on the mean precipitation in that area, because precipitation appears to have
little influence over air temperature.

Adjusted R-Squared: Some people prefer a variant of R? that attempts to standardize R? values from
different analyses so they may be more easily compared (see Draper and Smith [1998:139-140] for a
discussion of this concept). This extension provides both R? and Adjusted R®. Adjusted R? is calculated
as:

Ry =1-(1- RZ)[”—_lj

n-p
where n = sample size
p = degrees of freedom due to regression

ANOVA Table: Also called an Analysis of Variance table, this table provides a breakdown of the various
components of the regression relationship as well as an estimate of the confidence that a true linear
relationship exists between the two variables. The P-Value reflects the probability that the relationship
examined is not linear at all, but that it is rather simply an artifact of random chance. In this case, the
P-value < 0.00001 indicates that the chances are extremely remote that the relationship is due to chance,
and therefore it can be concluded that there is indeed strong evidence of a linear relationship between the
two variables.

Confidence Bands, Residuals and Predicted Values:

Confidence Bands: It is often wise to include some measure of the uncertainty of any statistical output
and this applies to regression as well as to most other statistical analyses. Although the plotted
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regression line is the best estimate of the relationship, there will always be some uncertainty unless every
possible combination of dependent and independent variables are sampled for all locations for all time.

The confidence bands in this case reflect the upper and lower confidence levels for the regression line
over different levels of the independent variable. Since a confidence level of 95% was used, the results
should be interpreted to mean “If identical regression relationships were developed an infinite number of
times, based on an infinite number of random samples of the respective variable populations, then the
true regression line will lie within the confidence bands 95% of the time.”

It can also be observed from the scatterplot above that the confidence bands tend to diverge from the
regression line at higher levels of annual precipitation. This is because the regression relationship is
strongest when the sample points are close to the means of the input variables. The confidence bands
will always be closest to the regression line at the mean value of the Independent variable, and diverge
as one moves away from that mean.

Confidence band values will also be added to the new “regression” theme attribute table, in fields labeled
“LCL” (for Lower Confidence Limit) and “UCL" (for Upper Confidence Limit):

ttributes of Watersheds_regress_2.shp

bk s Aeven maan | Sy e aann AR ) ] [
1 Coastal Drainage 7469035 117.6453 E59.6537375835 07.2497624165 01237003281 £25.4230686038 5393.8844065572 ¢ |
2 Dued Sedienane BG0.1838 219.2642 572.4504137821 -12 2666137821 -0.0182343057 5420465803531 7028542465811 _I
3 Garaet El lchkeul E75.0000 E.0354 E45.5957650767 29.4012449233 0.0437063511 E06.6705149502 6845269952032
4 Wadi Fartot E75.0000 711535 E53. 7990028703 21.2009971257 00315162922 E17 6640038843 5899339958563
5 Oued Bou Mamoussa E00.3357 283.7665 580.57 31145866 -80.18341 45866 -0.1191964654 B52.2922273041 703.854001 3691
B Dued Medjerda 513.7298 112.7802 EB9.0372276865 -145.3074276865 -0.2160064131 E24.6100172439 693464438121
7 i Coastal Drainage 427 8265 19.3318 E72 4RB92ER72F 244 B324 265727 -0. 3636577554 E42 0574578091 702 BE03953363
8 Coastal Drainage 4495533 91.0955 B56.31 02761032 -206. 7503761032 -0.3073442828 £21.0022032318 6916153429746
9 Dued Radjerta 593.1285 294.3992 681.91 20783266 -88, 7835703266 01319810185 653.9533798324 #09.8707 7682008
10 Dued Sebaou 515.4745 4956404 7072541622859 -191. 7796522859 -0.2850895587 EB83.4268160249 731.0814885469
11 Dued Sevbouse 536.3246 E24.6031 723.4342774 760 1871696774760 -0.2782366416 £39.8410342283 F47 147470723 .
d gl

Residuals and Predicted Values: Along with confidence bands, the new “regression” theme attribute table
also contains fields for the predicted values, residuals and standardized residuals. The “model” field holds
values for the predicted value of Mean Annual Precipitation based on the regression equation and that
record’s Mean Elevation value. The Residuals field [resids] holds values reflecting how much the
measured Mean Annual Precipitation deviated from the predicted model value. The Standardized
Residuals field [res_stand] standardizes these residuals values by converting them to Z-scores, making it
easy to identify extreme outliers.

Sequential Sums of Squares: You may be interested in how much each successive term contributes to
your model. The sequential sums of squares option allows you to calculate the proportion of the variance
explained by the model as each term is added to the model. For example, you may wish to know whether
a particular variable was worth including in the model at all. In the illustration below, both terms
contributed significantly to the final model but [Precip”2] had a much greater contribution than [Precip].

#2 Model and ANOYA Table_3

Sequential Sum= of Sguares: *

Dependent : Air temp

Coefficient | DF | Sum Sg. | Mean S5 | F | P =% | F-Sguared ==
[Precip] 1 3.81e01 3.81601 6.60846 0.0103737 0.0095524
[Frecip™2] 1 24 9483 24 9463 43 2014 < 000001 0.0719994

Residuals 642 370.718 0.57744

Hotes=:
# Thi=z table reflects the Sums of Sguares explained by adding each parameter into the
model,. in the order they appear in the model.
*#% P-vwglues calculated on F-distribution with 1, 642 df.
##% RE-Squared values reflect multiple correlation coefficient of all parameters entered
into the model up to this= point .

J
1| | _'ﬁl
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You may also wish to check how the model performs if the terms are entered in a different order. You
may use the Define Regression Model dialog (see p. 16) to enter terms in any order you wish.

Predicting New Observations:

The report document includes 2 buttons in the button bar which allow you to use your model to predict
new observations. These functions are described in detail on p. 43, but briefly they are:

D
1) Describe your model: This function generates a report with all the values you will need if
you wish to predict new observations in some other software.

P
2) Predict New Observations: This function predicts new observations using either specified
predictor values, a table of predictor values, or predictor grids.

Performing Analyses on Different Subsets of Data:

As was mentioned earlier, one of the strong points of this Regression tool is that a user can restrict the
analysis to a subset of features by selecting those features prior to analysis. If any features are selected,
then the tool will only operate on those selected features. If no features are selected, then the tool will
operate on all features in the theme.

If, for example, a user was really only interested in phenomena occurring within those watersheds that
comprise the Nile River basin, then they could select those watersheds and run the Regression tool on
that subset.
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i} Regression Example

o] watersheds

] Regression Line

2

N

] Scatterplotshp

] 085% Confidence [

o Africa_background_2 tif

Led

2096

15249

_mean

Aprec
©
]
i

384

# Model and ANOYA Table

Elev_mean

Seatterplot is linked with theme 'watershe_regress.dbf in view 'R agression Exam
Selecting features from one will auto matically s elect features from the other
Model = BO+ B1"[Elev_mean]

R-Squared = 0.4803, Adjusted R-Squared= 04885

Regression Hodel = BO + 1*[Elev_mean]
Regession Equation:

Y-hat = 214.1479805 + 0.6914859%[Elev_ncan]

Parameter Coefficients:

| 98% CI

Coefficient | Value | Std. Error | t-Value | P ix|t]) | Lower | Upper
[Intercept] 214.14758048 24 .073278026 8.8956718 < 0.00001 166. 872637 261.423323
[Elev_mean] 0.6914859463 0.0284174142 24 333176 < 0.00001 0. 63567954 0.74729234
P—valuss calculated on t—distribution with 618 df
Coefficient of Hultiple Determination (E-Sguared)

——>» R-Squared = 0. 489300

——>» Adjusted R-Sguared = 0.488473
AHOVA Table
Dependent Variable Field Hame Aprec_mean

Df Sum of Sg Hean Sg F-Value P-Value

Regression 1 74411629 572 74411629 5724834 592.1034630 < 0.00001
Residuals 618 77666134295 125673 .3564649
Total 619 152077763 B6E

4

Interestingly, in this example there is a reasonably strong regression relationship where the annual
precipitation appears to have a strong correlation with elevation, although visual examination of the
scatterplot indicates that a linear model may not be the best choice for this dataset. The evidence for a
linear relationship is very strong with a P-Value < 0.00001, and the R*-value of 0.49 implies that 49% of
the variation in precipitation can be explained by variation in elevation. In general, this analysis shows
that annual precipitation in the Nile river basin is reasonably well correlated with elevation, and that higher
elevations tend to get more precipitation than lower elevations.

Visual examination of the scatterplot shows that the relationship does not appear to be linear over the full
range of elevation values. Lower elevations tend to have very low precipitation levels, and the
precipitation becomes much more variable at approximately 400 meters. This suggests that it might be
interesting to run the regression twice; once for watersheds < 400 meters and again for watersheds > 400

meters.

-25 -



A different model would have given us a higher R?, but this dataset appears to follow markedly different
patterns over different ranges of Elevation and therefore it would probably make more sense to run the
analysis separately on the different ranges.

# Model and ANOYA Table

Parameter Coefficients: -
| 95k CI

Cosfficient | Value | Std. Error | t-Value | P {»|t]|) | Lower | Tpper

[Intercept ] —-119. 0360856 E5.126609037 —-2.159321 .03121051 —-227.29495 -10.777212

[Elev_mesan] 1.6595731608 0.2092377204 7.93151499 000001 1.24866742 2.07047889
.03876178 —0.0008809 —0.0000234

.95615930 —-0.0000001 0.oo0poo012

[Elev_mean”2] —0.000452176 0.0002183226 -2.071137
[Elev_mean”3] —0.000000003 0.0000000645 —0.05499%

oo e o

P—values calculated on t-distribution with 616 df.

Coefficient of Multiple Determination {(F-Sguared):
——>» E-Sguared = 0.571143
——3» Adjusted RE-Sguared = 0.569055%

ANOVA Table
Dependent Variable Field Name: Aprec_mean

P-Value

Df Sum of Sg Hean Sg F-Value

Regression 3 86858190 . 566 28952730.1887633 273.4590383 < 0.00001

Residuals 616 65219573 . 301 105875 .9306842

— - = — = — — — — —— - ' . . . — "
Total c1a 152077763 oo Scatterplot of "Aprec_mean’ over 'Elev_mean’ (Data Source = 'watersheds")

ﬂ Regression Line | %]

1

2005
] 0.95% Confidence |

ﬂ ScatterplotSshp T . - s Lo

mean

Aprec
&
oy

g4

-18 12320 2485
Elev_mean
Scatterplot iz link ed with theme 'watershe_regresz_4.dbf in view 'Regression Exa
Selecting features from one will automatically select features from the other.
Model = BO + BA*[Elew_mean] + BZ*[Elev_mean®2] + B3 [Elev_me an"3]
R-Squared=0.5711, Adjusted R-Squared= 05581

-

By the way, this example does not intend to suggest that you should keep running new regression
analyses looking for the best model that fits your data! Although it is tempting to try several different
models and use the best one, this process is called data-snooping and it defeats the purpose of statistical
analysis and random sampling. Ideally you should have a hypothesis already in mind before you decide
on a model, and you should design your model to test that hypothesis.

Keep in mind that almost any set of data will have some statistically unlikely quality to it somewhere,
which will occur simply by chance. Perhaps a large random sample of people will have an unusually
large proportion who were born on a Thursday, or who have a first name starting with an “A”. If you dig
far enough, you can probably find something statistically unusual in the dataset. However, just because
such an artifact exists in your data does not imply that such a phenomenon really exists in the population.
It may point to something interesting to look at in future research, but it is poor statistical practice to use
that artifact when drawing conclusions about the data.

If we were to try many different models before deciding which one best fit our random sample of data, this
would be equivalent to conducting a study on income levels, surveying a random sample of people to find
out their income, noticing incidentally that the people in our sample coincidentally happened to be born
mostly on Thursdays, and concluding from our study that most people are born on Thursday. Our
conclusion would have nothing to do with our original question, would likely be wrong, and would
(deservedly) open us up to ridicule from the scientific and general community.
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If you are unsure about what model might be appropriate for your research question, a good strategy
would be to conduct a pilot study with a smaller sample of data prior to the main study. Use the pilot data
to decide which model would be most appropriate, then get a new sample of data for the main study.

Back on topic, by selecting the Niger river basin, the analysis can quickly be re-run on a different region:

4} Regression Example

o] watersheds

| Afiica_background_2 tif

i ® = = s ag!
5 O] x]
' FRegression Line
|
« 0.95% Contidence | 2005201
N A
" Scatterplozshp g
. —2115.508
@
w
EI K
T1326.006
=1
<L
£36.393
-253.209
57
= Elev_rmean
& Model and ANOYA Table_1 Seatterplotis linked with theme ‘watershe_regress_1.dbf in view 'Regrassion Examy
Regression Model = BO + El#[Elev nesan] Selecting features from ane will automatically select features fram the other.
Regession Equation: Model = BO + B1%[Elew_mean]
T-hat = 1022 1466391 — 0.8439772*[Elev_msan] R-Squared = 0 0336, Adjusted R-Squared = 00815
Paraneter Coefficients T
| 95% CI
Coefficient | Valus | Std. Error | t—Value | P (:[t]) | Tower | Tpper
[Intercept] 1022 .1466390 57.650192997 17.730151 < 0.00001 908.6843382 1135.44989
[Elev_mean] —0.843977213 0.1330690663 -6 342399 < 0.00001 —1.1055055 —0.5824488
P-values calculated on t-distribution with 441 df.
Coefficient of Multiple Determination (R-Sguared):
—>» R-Squar=d = 0.083591
—>» Adjusted R-Sguared = 0.081513
ANOVA Table
Dependent Variable Field NHame: Aprec_mnean
Df Sum of Sg Hean Sg F-Value= P-Value
Regression 1 12257402 241 12257402 2405483 402260347 < 0.00001
Residuals 441 134378504 674 304713 1625270
Total 442 146635906915 o
4| | 4|

The results of this analysis are also interesting in that they differ dramatically from the relationship
established for the Nile river basin. The evidence for a linear relationship is still very strong with a
P-Value < 0.00001, but the R*value is very low at 0.08, meaning that elevation appears to have little
influence on annual precipitation in this region. Interestingly, the regression relationship takes a different
direction than was seen in the Nile megabasin, in that here the mean annual precipitation decreases as

elevation increases.

Visual examination of the scatterplot again indicates that the relationship might be better modeled with a

more complex model.
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There are several excellent texts available that discuss regression in exhaustive detail. For those who
are interested, the author recommends:

Draper, Norman R. and Smith, Harry. (1998) Applied Regression Analysis. 3" ed. New York: John Wiley
& Sons, Inc.; 706 pages. (Wiley Series in Probability and Statistics).

Neter, John; Wasserman, William; Nachtschiem, Christopher J.; and Kutner, Michael H. (1996) Applied

linear statistical models: regression, analysis of variance and experimental design. 4" ed. Burr
Ridge, lllinois: McGraw-Hill/Irwin; 1408 pages.
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Linear Regression for Grids:

This function analyzes the linear relationship between one or more independent predictor grids and a
dependent response grid, producing a grid of predicted values and similar outputs to those discussed in
Linear Regression for Themes and Tables (p. 16). In this case, the predicted values, residuals and
confidence levels will be generated as separate grids.

Click the ‘g, button in the view button bar to open the Regression Options window:

! Regression Options: i‘
Select ane or mare Select a zingle AMALYSIS BEOUMDARIES

- |ndependent/FPredictor Grids - - Dependent/Response Grd -
\-Hat [Predicted alues) =] | vHat [Predicted values) =] . DEJ?IT?SDENS?S?ME
precip_randar precip_randar _Don't Use Polygans - :_J
Mean_air_temp bean_air_temp ARG

Hha _'r'E: E:_EI 24.5Np

Anh_precip Ann_precip

r-hat [Mean_air_temp] = Define Model I @] ]

BO + B1¥[precip_random] + B2*[Ann_precip] ﬂ

Fleaze zelect
_vJ -POLYGOM ID FIELD-

OUTPUT OFTIOMS:

v Save Grd Cell*alues in a point shapefile?

¥ Descriptive Statistics v R-Squared
: v ANDWA Table
[v Confidence Interal far Parameters
[ Scatterplat

Confidence Level: .95

¥ iSave Predicted Yalues |
v Corfidence Bands anound Model W

Confidence Lewvel; 095

Help

v Save Stand. Residuals Cancel

[T Save Confidence Level Grids ¥ Sequential Sums of Squares

i,

Select your grids of independent and dependent values from the appropriate listboxes and choose your
output options. All selected output will appear in a report document identical to that described on p. 18.
The various output options will produce the following data:

1. Save Grid Cell Values in a Point Shapefile? This will produce a point shapefile where each point
represents the cell center of the regression grid. The attribute table will contain fields for all the
output values that are selected (i.e. confidence bands, residuals, etc.)

2. Descriptive Statistics: Statistics include the cell count, mean, minimum, maximum, range, standard
deviation, variance and sum of both the independent and dependent grid. If either grid is an Integer
grid, then statistics will also include the majority (i.e. mode), minority and median values.

3. Confidence Interval for Parameters: Generates a range of parameter values that meet a specified
confidence level. Confidence intervals are often preferred over simple predicted values because they
convey how certain you are about the true parameter. See the discussion of parameter confidence
intervals on page 21 for a description and example.
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10.

11.

Confidence Bands around Model: Generates a region in which the true regression line probably lies,
based on a specified confidence level. Remember that any statistical analysis on a sample only
estimates a true population parameter, and therefore regression analysis only estimates the true
linear relationship. Therefore these confidence bands provide a more realistic estimate of the
regression relationship than the basic regression line. See the discussion of confidence bands on
page 22 for a description and example.

R-Squared: A measure of how well correlated the two variables are, and can be interpreted to mean
the proportion of the variation in the dependent variable that can be explained by variation in the
independent variable (see page 22).

ANOVA Table: Short for Analysis of Variance, this table reports several details about the regression
relationship including the probability that a true linear relationship exists (see page 22).

Scatterplot: The scatterplot provides a visual illustration of the linear relationship. The plot includes a
point for each pair of independent and dependent values, with the Independent variable plotted along
the X-axis and the Dependent variable value plotted along the Y-axis. IMPORTANT: This scatterplot
can only be developed if a single predictor variable is used, although that single variable can have
multiple orders or transformations. See page 33 for an example and discussion.

Save Predicted Values: The predicted value reflects the Y-coordinate of the regression line at any
particular independent variable value or combination of variables, and is therefore the expected value
of the dependent variable based on the regression model. For grid regression, these predicted
values are saved in a new grid.

Save Residuals: The residuals are equal to the observed value minus the predicted value of the
dependent variable, and reflect how much the dependent values deviate from the model. These are
also saved in a new grid.

Save Standardized Residuals: Standardized residuals reflect the residual values transformed into Z-
scores, with Mean = 0 and Standard Deviation = 1. Standardizing the residuals makes it easier to
identify outlying values. These values are also saved in a new grid.

Sequential Sums of Squares: This function generates a table showing how well the regression
equation fits the data as each term is entered into the model. This table can be used to assess how
relatively important each variable is to the final model (see p. 23 for an example).

Restricting the Number of Points:

Two of the output options (Save Grid Cell Values and Scatterplot) potentially will generate a large number
of points which may cause ArcView to run very slowly and possibly even crash (See the discussion on
“GRD ERROR - Syntax error at or near symbol NL” in Troubleshooting on p. 90). Therefore this
extension allows you to set a maximum number of randomly-generated points distributed over the
analysis area:
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i} Set Maximum Point Count: 5'

Y'ou have zelected to create either a point shapefile or a scatterplat. If your grides
have large numbers of cells, this can force Aciew to create a ver large point |
shapefile and consequently run very slowly, Alza, Archiew will almost certainly

crazh if you create more than 32,500 points.

Do you wigh to et a maximum number of points for the shapefiles? [nthis caze, al
the regression statistice will still be calculated using the full set of data, but only a
subszet of pointz will be randomly generated within the analyziz extent and used to
generate zoatterplats and point themes. Often a scatterplat of only a few hundred
pointz will suffice to illustrate any potential pattemns or relationships in the data.

Qthenwize a zeparate point will be generated for each cell in the analysiz area.

=
" Gernerate Points for A Cells
Cancel
{* [Generate Random Subset of Pointz
b axirnum Mumber of Points: | 500 L
e

IMPORTANT: Choosing this option will have no effect on the statistics generated! All statistics will be
based on the full dataset. The number of points in the point dataset and scatterplot will just be smaller.

Setting Analysis Boundaries:

In many cases a user may not wish to conduct a regression analysis using the entire grid extent. More
often the user will wish to restrict the analysis to a particular region (perhaps to within a country or
watershed). The user has two ways available to set up an analysis boundary:

Using a Grid Mask: A grid mask is a grid that is used only to define what areas should be used in any
analysis. All analyses will be restricted to those regions where the mask grid does not have a “No Data”
value. Users can designate any grid as an analysis mask by opening a view, clicking the “Analysis” menu
item, and then clicking “Properties...” to open the Analysis Properties window:
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Analysis Properties: Grid Regression

Analyzis Extent AN

Left | Top |
Bottom | Right |
Analysis Cell Size | Marimum OF Inputs ~]
Celigie | da

Murnber af Rows I

Murnber of Calumns I

r

Analysic Mask | Mo Mask Set =]

k. I Cancel I

Click the drop-down box next to “Analysis Mask” and choose the grid to use.

Using a Polygon Theme: Users can also use a polygon theme to delineate analysis boundaries. In this
case, the tool will conduct separate regression analyses for each selected polygon in the polygon theme.
All analyses will be reported in the final report window, with each analysis identified by the polygon ID
value.

Technical Note:

This tool only analyzes the regions of each grid that overlay each other and excludes all areas in which
any grid has “No-Data” values. If the grids have different cell sizes, this tool uses the larger of the cell
sizes for the analysis. If any mask grids were set prior to the analysis, those masks will remain in place
during the analysis such that any areas excluded by the mask will also be excluded in this regression.

Technical Note regarding Scatterplots from Grid Data:

You may notice that the grid cell values intersected by your points in your view do not match up with the
values recorded in the point attribute table. This can happen if your grids have difference cell sizes or
origins, and does not mean that the regression used incorrect values. As described in the Technical Note
above, this extension uses the maximum cell size of all your input grids as the analysis cell size so grids
with smaller cell sizes will be automatically resampled to larger cell sizes in the course of the regression.
The values in your point attribute table reflect the resampled grid cell values.
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Generating Scatterplots
It is good statistical practice to analyze the usefulness of a regression analysis using all the factors of the
relationship described previous sections, as well as to review a scatterplot of the data and regression line.
In the example below there is extremely strong evidence of a linear relationship given the very small
P-value, but the R? value shows that the linear relationship really does not explain the behavior of the
dependent variable very well. Looking at the scatterplot of the output in the figure below illustrates the fact
that the relationship is not strong. Furthermore, the air temperature variance appears to be change
dramatically at about 2050 mm of precipitation, violating one of the assumptions of regression (see p. 8)
and suggesting that data above and below that breakpoint should be analyzed differently.

#! Scatterplot of "Air_temp' over 'Precip' (Data Source = "Sample Points")_1

ﬂ Regression Line
o] 095% Confidence |

ﬂ Scatterplot9s.shp
.

-

o
£
=
.tl T R —
< .
19 L LR T L TP L PP PEPETTR TR PR PRSPPI ' .................... ,! ...................... - ‘

" i |

1484 2622 3759
Precip

Scatterplot is linked with theme 'sample_p_regress_1.dbf' in view "“View5' .
Selecting features from one will automatically select features from the other.
Model = BO + B1*[Frecip] + B2*[Precip”2]

R-Squared = 00720, Adjusted R-Squared = 0.0691

In cases where a user may wish to identify a particular feature in the scatterplot above, the user can click

the ldentify tool to click on any of the points and view the attribute values.
Linked Scatterplot: The scatterplot will automatically be linked to the source data when it is generated,

allowing you to quickly and easily query scatterplot points to find out where they lay on the landscape.
For example, suppose our regression on the points below produced the corresponding scatterplot:
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Precip
arplot 15 linked with theme "sampla_p_regrass_1 dbf" in view "Views'
0 features from one will automatically select faatures from the other
| = B0 + B1"[Precip] + B2"[Pracip7]
R-Squared = 0.0720, Adjusted R-Squared = 0.0691

It appears that there is a dense cluster of points in the upper left corner of the scatterplot, and then a
diffuse cloud of points over the rest of the scatterplot. We may wonder of there is some geographic
component that may explain why these diffuse points are so distinct. If we select the points in the
scatterplot, the corresponding points in the view will automatically select also:

Selecting these points on the Scatterplot automatically
causes the points on the view to become selected =

off 036% € atitanca | : \

p

o Bialbph 08y qe.- . i
% s —
ERe Y

Air_tem

a8 622 3750
Precip
arplot 15 linked with theme "sampla_p_regrass_1 dbf" in view "Views'
0 features from one will automatically select faatures from the other
Model = BO + B1'[Precip] + B2'[Preciph2]
R-Squared = 0.0720, Adjusted R-Squared = 0.0691

Based on this quick analysis, we see that the diffuse points are clustered at the western edge of the
analysis region, with an island in the middle. This suggests that there is some geographic component to
mean annual air temperature that seems to be related to proximity to the western coast.

IMPORTANT: Please note that this extension only generates scatterplots if you use a single dependent
variable in your model. The model may have multiple orders of this variable and still produce scatterplots,
but this extension cannot calculate a scatterplot if there are more than 2 dimensions to the data. The
following models may all be used to generate scatterplots:

Y =08+BX+¢

Y =B, +BX+ B, X +¢

Y =B, + X+ B X2+ B X +e
Y =B, +BX+ B X+ B,InX +¢

The following models may not be used to generate scatterplots:
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Y=8+B8X+BL+¢
Y=8+BX+B,X+BZ+¢
Y =ﬁ0+ﬂlx +/’711X2 +ﬁzz+ﬂzzzz+g

Predicting New Observations:

The scatterplot includes 2 buttons in the button bar which allow you to use your model to predict new
observations. These functions are described in detail on p. 43, but briefly they are:

D
1) Describe your model: This function generates a report with all the values you will need if
you wish to predict new observations in some other software.

P
2) Predict New Observations: This function predicts new observations using either specified
predictor values, a table of predictor values, or predictor grids.

Altering the Appearance of your Scatterplot:

Scatterplots are also useful for adding to reports and manuscripts so this extension adds a few functions
to enhance the appearance. All components of the scatterplot can be turned on and off and all text can

be set to specific fonts and sizes. All functions are available from buttons and tools in your Scatterplot
button and tool bar.

Scatterplot Components

Y-Axis

' Y-Axis Grid Lines

2 Y-Axis Tics
Y-Axis labels —{ 150730 - ¥ fff
A S
1.38640H A o B £ ]
£
Y-Axis Title —#= T | 26550
Sh.
— X-Axis Grid Lines
o | ks
1.14460H 5 "%
1.02370) - o o X-AxiS
[ 2
16.11000 — 5:02500 9.54000 I, ¥ Ais L abals
X-Axis Title —= Age

Scatterplot is linked with theme 'sample_h_regress_2.dbf" in view 'Children'...

= Selecting features from one will automatically select features from the other.
Description — \1oei = 5o + B17Age]

R-Squared = 0.7556, Adjusted R-Squared = 0.7531

Modifying Text Fonts and Sizes:

Click the @ button to begin modifying font attributes for all text in the scatterplot. The “Modify Text
Label Attributes” dialog will open, listing all current fonts and whether they are currently turned on:

-35 -



i! Modify Label Text Attributes: x|

W Include =-Axis Title [Faont: &rial, 12 pt.]
Change =-4xiz Title Font |

¥ lnclude #-xiz Labels  [Font drial, 10 pt]
Change #-Axiz Label Font |

¥ Include Y-Axis Title [Fant; &rial, 12 pt.]
Change -4z Title Font |

¥ Include*f-4xis Labels  [Fonk: &rial, 10 pt]
Change v-&xiz Label Font |

[¥ Include Description [Font: &rial, 10 pt.]
Change Dezcrption Font |

Cancel | . Ok

If you wish to change any of these fonts, simply click the appropriate button and specify the new font and
size:

i) select X-Axis Title Font: [ x|
- Select Fant - - Select Shyle -

French Script MT ﬂ k.urziv ;I
Futura LEBT Halbfett
Futura Md BT LK albfett J
Futura =Bk BT bl
FuturaBlack BT -Select Size -
Gararnond 29 _*_]
(G autarmi _I J
Feorgia K1l
Gigi a2 ;!
Gill Sans kT
Gill Sans MT Condensed Sl
Gill Sans MT Ext Condensed E:;i 0K y

Note that you can also specify whether the various text components should be shown on the scatterplot.
These text attributes can also be modified individually using the X-axis, Y-axis and Description buttons.

Modifying X-Axis Attributes:

This function allows you to set your X-Axis Title text and font, your X-axis label decimal precision and font,
your number of X-axis sub-divisions, and whether you want any of these components turned off. Click

the button to open the “Scatterplot X-Axis Attributes” window:
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#2 Scatterplot X-Axis Attributes: 5[

¥ Show =-fuis Title:
stis Title Text: I,&,ge of Child

-tz Title Font; [Font: Garamond Fursiv Halbfett, 30 pt ]
Change =-4#iz Title Font |

[+ Shiow stz

¥ Show =-fuis Labels: Label Decimal Precizion; | ]
H-diz Label Font: [Font: Anal [kalic, 15 pt]
Change -tz Label Font |

v Show Label Tics [ Show Label Grid Lines
# Labelz, Tizz and/or Gridlines [minimum = 2] I R
Cancel |

Modifying Y-Axis Attributes:

This function allows you to set your Y-Axis Title text and font, your Y-axis label decimal precision and font,
your number of Y-axis sub-divisions, and whether you want any of these components turned off. Click

the . button to open the “Scatterplot Y-Axis Attributes” window:

#! Scatterplot Y-Axis Attributes: 5[

V¥ Show vz Title;
otz Title Texk: I Height [reters]

-tz Title Font: [Font: Garamond Furss Halbfett, 30 pt.]
Change -4z Title Font |

W Show Y-Asis

¥ Show v-tsis Labels: Label Decimal Precizion; | 2

-duie Label Font: [Font: Anal ltalic, 15 pt.]
Change -4z Label Font |

[¥ Show Label Tics [+ Show Label Grid Lines
# Labels, Tics andfor Gridlines [minmum = 2] I 15
"""" Caneal | oK
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Modifying Description:
This function allows you to modify the description text and font, plus whether you want the description

included with the scatterplot. Click the button to open the “Scatterplot Description” window:

#! Scatterplot Descripktion: E‘

¥ Show Description

Description Text:
Model = BO + B15[4ge] -
R-Squared = 0.7556, Adusted R-Squared = 0.7531
Scatterplat Created September 10, 2005

Author Jenneszs Enterprizes

L«

Description Font = Korinna Regular BT, 17 p.

Change Description Font | Cahcel 0k, 7

Refreshing Scatterplot:
If you resize your scatterplot by dragging on a corner, or if you simply want to regenerate your scatterplot
&l

for whatever reason, click the button to refresh it. The scatterplot will recreate all the graphic
elements and redraw it to fit the current window size.

Adding additional components:

The Scatterplot document is based on the View document and shares many of its characteristics. For
example, you can turn off the scatterplot points, regression line or confidence bands in the same way you
turn off a theme in a view. You can also modify the symbology by double-clicking on them in the Table of
Contents and using the standard ArcView legend editor.

Also as with views, you can add any graphic components you wish using the standard graphic tools in the
tool bar. These are the same tools that are available in the View toolbar, except that they are arranged
individually rather than in drop-down tool menus.

For example, if you wished to add a title with shadow effects to your scatterplot, use on the “drop-shadow
text” tool to add the text.
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! Text Properties - {Callout) x|

A elationzhip Between Height and Age -

Harizontal Alignment; EE%

Yertical Spacing: [ 1.0 lines

R atation Sngle:; | I} degrees

v Scale Test with View

k. I Cancel |

Next, click [Control]-P to open up the standard ArcView Symbol window (this window is also available in
the “Window” menu) and set your font attributes:

101
SAEFIREE

Anal

Bermard MT Enndensec;I

BemhardF azhion BT J

Bemhardtdod BT

Blackadder ITC

Bodani kT

Eodoni MT Elack LI
Size: I 58.0 "I
Style: I vI

Create Markers |

Based on all the modifications in the examples above, the new scatterplot would look like this:
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Maodel = BO + B1%Age]

R-Squared = 0.7256, AdustedR-Squared = 0.7531
Scatterplot Created Septarmber 10, 2005

Athor: Jenness Enterprises

Copyright 2005

Adding your Scatterplot to a Layout:
Because the scatterplot is based on the View document type, it can be added to layouts in the same

manner that Views are added to layouts. Simply click the . button in the layout, draw your box to hold
the scatterplot, and then look for the scatterplot document in the list of views:
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View Frame Properties - (¥iewFrar

Wigw:

&} Layoutl

A Estert: [Filview Frame
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Scale: [User Specified Seale =
10
i
=
=l

(4 .
v Qualty: [ Presentation

Cancel I

y;

Height (meters)

Age of Child
TIpa——

B e 12T B St 0751

b e o 4

b T By

Coptiahl 2005

T 23}
: a8 I

. Sample_p_regress_3.shp

. Sample_p_regress_2.shp

. Sample_p_regress_1.shp
Sample_p_regress.shp

" Sample Points o

Jeft Jenness
* 3020 N. Schevene Blvd.

Jenness | Flagstaff, AZ 86004
Enterprises | (/S A

=] S

Beware of File Accumulation:

IMPORTANT: This process potentially generates 3 shapefiles every time a scatterplot is generated. Over
time, this means you can accumulate a lot of files. We recommend that users periodically review the files
in your project work directory and delete the ones that are not being used anymore. The easiest way to
delete shapefiles is to use the “Manage Data Sources” menu item in the View “File” menu. Click that
menu item, select the shapefiles you would like to delete, and click the “Delete” button. This function will
automatically delete all the multiple files that make up each shapefile, and it will check to see if the file is

currently in use in your project before deleting it.
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#! Source Manager X|
Cloze
Close &l /
SetWorking Directory, ARclzechicliane Directories:
v Frset Chi+S Inf_bands12.shp conf_bands13.shp cwwdhscatterplots Cancel |
Save Project Az, = e =

Backup Project File Ctil+B = wrd

Estenzions. .. Copy |
Exint... - Rename
Print Setup... conf_bandz14.shp

E conf_bands15.shp
| Delet
Export... B conf bands2.zho LI

Source Types: Dirives:
Import Data Saurce... [Shapefie = [= =1
Export D ata Source...
Exit
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Describing and Predicting New Observations Using Your Model:

Describing your Model:

The regression report includes all the parameter estimates and model characteristics that are typically
necessary to evaluate and describe your regression model. If you wish to predict new observations, you
only need to plug in the appropriate predictor values into the equation (or use tools available in this
extension; see below). However, if you wish to include a measure of the uncertainty along with the new
observation, then you will need additional data not available in the regression report.

From either the Report or Scatterplot window, click the button to view a description report of the
model. This report will describe the model used to generate that report or scatterplot:

il Model Report: x|

Dezcription of Begreszion Model: _ﬂ

Model: Predicted Precip = 21206.1583932 - 16221 07074387372 Air_termp] +
33.864991 5461 43 [Air_temp™2]

Original Besponze \ariable: Precip

Original Predictor W anables:
-+ -Intercept: Parameter Estimate = 21206.1533332340150000
-» [Air_temp]: Parameter Eztimate = -1622. 107074387371 5000
-x [Air_temp™2] Parameter Estimate = 33864991 5451428530

MSE [Mean Square Emror; AkA Residual Mean Sgquare] = 73347 1050337153430000
Model Sample Size [n] = 645

[a-tranzpoge-<)-lverse Matris: 3 % 3 makns

105.58307753840345300  -3.0054071440303535  0.1309781125208300
-3.0054071440903702  0.76883835826535600  -0.01636301 77110300
0.1309751126208300  -0.01E3630177110200  0.00034332330630100

kodel Creation Date: Monday, Septermber 05, 2005 17:28:20 Abd

Copy ko Clipboard | Copy and Cloze

To predict new observations, you will only need the parameter estimates. To calculate the standard
deviation or confidence intervals around those new predictions, you will also need the Mean Square Error

(MSE), the sample size (n) and the (X’X)flmatrix (denoted as “[X-transpose-X]-Inverse”) calculated from
the original dataset. From Neter et al. (1996:235), the confidence limits around a predicted new
observation are calculated as:

Y., *t

w (1—a/2;n—p)s{prEd}
where \?new =new predicted observation

t = t-value at confidence level (1-«), with (n—p) degrees of freedom

(1-a/2in-p)
n = original sample size
p = number of parameters, including y-intercept

s{pred} = standard deviation of new observation
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The standard deviation of the new observation is based on the mean square error of the original model,
the original predictor values and the predictor values of the new observation:

new

s{pred} = \/MSE (1+ X (XX) " X, )

where X! = Vector of new predictor variable values

new

Predicting New Observations:

This extension includes functions to help you predict new observations using your regression model,
including confidence intervals around those predicted observations. Predictions may be made in 3 ways:

1) Predict a single new observation by entering the predictor variable values.
2) Predict a series of new observations using a table of predictor values.
3) Generate a grid of new observations using a set of predictor grids.
These options are available by clicking the button on either the Report or Scatterplot document. The

predictions will be based on the model associated with that report or scatterplot. After clicking the button,
you will be asked which type of new observations you would like to predict:

i1 Select Format for New Dbservation: ﬂ

+ Predict single observation by entering pararmeter values. ..

{ Predict observations for all records in a table. .

" Generate a grid of predicted values based on parameter grids...

Predicting a Single New Observation:

Select the “Predict single observation by entering parameter values...” option and click ‘OK’. You will
next be asked to identify your predictor variable values:

#! Predict New Dbservation: ) x|
Model Predicted Precip = 21206.1583932 - ;|
1622 1070743873724 [A0_temp] + 33.864991 5461 43 [Air_temp™2]

Pleaze enter model parameter values by double-chicking on the
parameter names below and entering a walue. Click '0OF" when all values
are zef,
== Wariahle [Air_temp]: <- Double-Click ta Set - ;I
== anable [Air_temp”2] <-- Double-Click to Set --»
¥ Calculate confidence interval? Confidence Level: 0.0
i 4

-44 -



The top of the window describes the model that will be used, and the central portion lists the variables
that must be assigned values. If you wish to generate a confidence interval around the predicted new
observation, check the box at the bottom and enter a confidence level.

Assign values to your variables by double-clicking the variable name in the list. Another window will
appear asking you to enter the number, and afterwards the main dialog will indicate that you have
assigned a value to that variable:

! Enter "[Air_temp2]" ¥Yalue: | E[

Enter Murmber far [&ir_temp™2]: ak, |
I 400 Canizel |

After you have entered all your values, click ‘OK’ on the main dialog to calculate the predicted new
observation:

! Predicted New Dbservation Report: ' x|

Prediction of Hew Obzervation: -

Model: Predicted Precip = 21206.1583332 - 1622 10707438737 2*[4ir_temp] +
33.864991 5461 43+Air_temp”™2]

Where:
- [Air_temp] = 20
- [Air_temp™2] = 400

Y-predicted = 2210.01

Y'-Predicted Standard Deviation = 292 827
Upper 0% Confidence Lewvel = 2792.37
Lawer 90% Confidence Lewvel = 1827 66

Confidence limitz bazed on t-distnbution with 642 degrees of freedom

Analyziz Begarn: September 8, 17:42:24 A
Analysis Complete: September 3, 11:42:24 AM
Time Elapzed: 0 zeconds..

Copy to Clipboard Copy and Cloze

Predicting New Observations for All Records in a Table:

IMPORTANT: This function will add new fields to your table containing your predicted new observations
and the standard deviation of each new observation, plus (if desired) fields for the upper and lower
confidence limit for that observation. If you wish to leave your original data unmodified, make a backup
copy of it before running this function.

Select the “Predict observations for all records in a table...” option and click ‘OK’. You will next be asked
to identify the table containing your predictor variable fields:
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it} Select Table: x|

Pleasze select the table containing vour model parameter values, This :|
function waill generate new predicted obzervation values for each record
containing walid data.

=* [MPORTAMT: Thiz funchion will add new fields to your table
containing the predicted values. I you do not wizh bo rodify vour ariginal
data, pleaze make a back-up copy before running thiz function, =

L

Attributes of Sample_p_regresz_ 13.zhp
Attributes of Sample_p_reagresz_14.zhp
Attributes of Sample_p_regress_ 27 shp

Attributes of Scatterplat11.shp

zample_h_regress.dbf

zample_height. dbf

C | Ok
ahce Y

Click 'OK’ and specify which fields correspond with each predictor variable. Note that even if your model
contains multiple transformations of a single variable, your table must contain separate fields for each
transformation.

! Predict New Observation: ﬂ

todel: Predicted Precip = -22635847 - 431434, 332031 25%[&ir_temp) ;l
+ 3435 48295593261 P[Air_temp 2] + 5143261171 A4ir_temp] +
895231 FIn[&ir_temp]]

Pleaze identify model parameter figlds by double-clicking on the
parameter names below and selecting a valwe, Click 'O when all
walues are set.

[+ 1141

“Wariable [Air_temp]: Field = [&ir_temp]

Yariable [&ir_termp™2]: Figld = [air_2]

== Wanable [1/4i_temp]: <-- Double-Click to Set -
=% Alanable [Infar_temp]]: <-- Double-Chck to Set -

E
¥ Calculate confidence interyal? Confidence Lewvel: 0,90
_ b

Simply double-click on the predictor variable name and select the appropriate field from the list:
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i} Select '[1/air_temp] Field: x|

Ln_precip ;I

M ewfigld

2 oK. |
Cancel |

In_air

compare

&

After you have specified all your predictor variable fields, click ‘OK’ on the main dialog to calculate the

predicted new observations:

#! Predicted Mew Observation Report:

Prediction of New Observations:

Model: Predicted Precip = 22635847 - 431434, 332031 25°[Air_temp] + 3435 48295593261 72*[4ir_temp™2] +
B1432617 1 A8ir_temp] + 89531 3*[In[4ir_temp)]

Table = Precipitation and Temperature Y alues
Located at o:heznhay_gisadharcviewh]_jeffzciptzsconzultationhunited_nations\regrezsiontdatahiest_table dbf

B45 records analyzed...

W'here:
- [Air_temnp] values extracted from [Sir_temp]
-3 [&ir_termp™2] values extracted fram [ai_2]
--» [1/4ir_temp] values extracted fram [air_invers]
- [In[&ir_temp]] values extracted from [In_air]

Y-predicted Walues Saved To [pred_wal]

Y'-Predicted Standard Deviation Saved To [pred_sd)

Upper 90% Confidence Level Values Saved To [pred_LICL]
Loweer 90% Confidence Level Walues Saved To [pred_LCL]

Confidence limitz bazed on t-diztribution with B40 degrees of freedom

Analyziz Began: September 8, 11:44:20 AM
Analpziz Complete: September 8, 17:44:29 AM
Time Elapzed: 9 seconds...

Copy to Clipboard Copy and Cloze Cloze |

Generating Grids of New Observations:

This function will add new grid themes to a view containing your predicted new observations and the
standard deviation of each new observation, plus (if desired) grids of upper and lower confidence limits

for each new observation.

Select the “Generate a grid of predicted values based on parameter grids...” option and click ‘OK’. You

will next be asked to identify the view containing your predictor variable grids:
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i Select Yiew: x|

Pleaze select the view containing pour model parameter grids. This :|
function waill add new grids to thiz view for all areaz containing walid data,
including the predicted values, the predicted value standard deviations,

and [if desired) grids reprezenting the upper and lower confidence levelz
around the predicted values.

|14l

africa_sample points

Bell Curve

arid_reqreszsion_2

projected wvigw

Residuals

vanous_shapes _|
-

-

C | Ok
ahce Y

Click 'OK’ and specify which grids correspond with each predictor variable. Note that even if your model
contains multiple transformations of a single variable, your view must contain separate grids for each

transformation.

i! Predict New Observation Grid:

bodel: Predicted Precip = 21206.1533332 - ;l
1622 107074387372 [A0r_temp] + 33.864991 5461 43+ [Air_temp™2]

Fleaze identify model parameter gndz by double-chcking on the
parameter names below and zelecting a grid. Click '0F. when all

walues are set.

KA

{ Wariable [&ir_temp]: Grid = [Mean_air_temp]
= M anable [4i_termp™ 2] <~ Double-Click to Set -

E
¥ Calculate confidence interyal? Confidence Lewvel: 0,90
Cancel 2

Simply double-click on the predictor variable name and select the appropriate grid theme from the list:
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i Select "[Air_temp~2] Grid:

X

Select a Grid for [&ir_temp™2]:

air_cubed -

UCL 95 2 oK |
LCL_95 2 — |

JCL_595
LCL_ 595
Standardized Rezidualz li -

After you have specified all your predictor variable grids, click ‘OK’ on the main dialog to calculate the grid

of predicted new observations:

il Predicted New Observation Report:

Prediction of Mew Observation Gid:

Where:
-» [bir_temp] Grid Theme = Mean_air_temp
-z [Air_temp™2]: Gnd Theme = air_squared

Y-predicted Grid = [Predicted alues]

-+ Temporary Grid

--» Source = oihesrhay_gisd0harcviewh1_jeffzoriptehoonzultationhunited_nationzhregreszionhgrid5e
Y-Predicted Standard Deviation Grid = [Predicted Stan, Dev.]

--» Termparan Grid

-» Source = cihvesrhav_gisd0harcviewh1_jeffzoriptzhconsultationhunited_nationshregreszionhgrded
Ipper 90% Confidence Level = [Upper 90% CI]

--» Temporary Grid

-3 Source = oihesrhav_gisd0harcviewh1_jeffzoriptshoonzultationhunited_nationzhregressionhgrids3
Laower 90% Confidence Level = [Lower 30% CI]

--» Termparan Grid

-» Source = chvesrhav_gisd0harcviewh1_jeffzcriptshoonsultationhunited_nationshregressionhgridsl

Confidence limits bazed on t-distribution with 642 dearees of freedom

Mew gridzs added toView [Grid Fegreszsion]

Analyziz Began: September 8, 12:01:15 P
Analyziz Complete: September 8, 12:01:18 PM
Time Elapzed: 3 zeconds...

todel: Predicted Precip = 212061583932 - 1622 10707438737 2+[4ir_temp] + 33.864931546143 [4ir_temp™2]

Copy to Clipboard Copy and Cloze Cloze

Why are the confidence intervals so large?

You may notice that the confidence interval around your predicted new observations are surprisingly
large, and certainly larger than the confidence bands around the original model. This is because the

predicted value is a random variable and therefore has an additional degree of uncertainty added on top

of the original model uncertainty. For example, the uncertainty of the original model can easily be

observed by looking at the confidence bands around the regression line:
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Upper 95% Confidence Limit for Model

Y: Model

Lower 95% Confidence Limit for Model

The true model could lie anywhere, and the 95% confidence level can loosely be interpreted to mean that
there is approximately a 95% chance that the true model lies between the bands.

When we predict a new observation using some confidence level, then the new observation will always
be located on the regression line. However, because of the uncertainty about the regression line, we
must consider that the new observation itself could lie anywhere between the confidence bands, and
therefore we must combine the uncertainty about the new predicted observation with the uncertainty
about the model, which automatically expands the original confidence interval:
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The confidence intervals are relatively large because the new predicted observation could lie anywhere
between the combined confidence intervals around the original model confidence interval.

Beware of predicting outside the range of predictor values:

You should always be wary of predicting new observations using independent variable values that are
outside the range of your original dataset. Just because you observed a statistically significant and
predictable relationship between your predictor and response variables does not mean that the
relationship continues over the entire possible range of predictor variables. As a simple example,
consider the relationship between age and height for children ages 6-10:
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Wodel = B0 + B 17[Age]
R-Squared =07556, Adusted R-Sgquared = 0.7531

There is a clear and well-defined linear relationship here, and it appears that we could use this model to
make reasonably accurate predictions of a child’s height based on their age. The model is a good one for
children between 6 and 10. We run into problems, however, if we try to predict outside this age range.
Because children typically stop growing in late adolescence, this model is not appropriate for older ages.
Using this model, we would predict the that a 30-year old would be 2.7 meters (8 ft. 10 in.) and a 60-year
old would be 4.7 meters (15 ft. 5in.). These predictions are clearly nonsense.

The problem with predicting outside the range of the data is easy to visualize using a simple linear
regression example such as that above. Unfortunately this problem can be difficult to identify and avoid
when using more complex models. If we wanted to predict a child’s height based on both their age and
weight, we need to be aware that the joint range of age and weight may be difficult to define. For
example, because children tend to weigh more as they grow older, the joint distribution of age and weight
may look something like this:
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Range of Age Values
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Range of Weight Values

The joint range of Age+Weight combinations is not as clearly defined as the simple range of Age or
Weight individually, but we can approximate it by drawing an ellipse around the general cloud of points.
We can then consider the region inside the ellipse to have been sampled and therefore more appropriate
for predicting new values. The region outside the ellipse has not been sampled and therefore predictions
should be made with caution.

A key point to note here is that we may pick a combination of age and weight that is within the respective
ranges of sampled values, but this combination may not be within the joint range of sampled values. For
example, we never sampled a child at the minimum of the age range and the maximum of the weight
range, so it may be inappropriate to predict a child’s height based on such a combination of values.

When working with multiple predictor variables, it can be difficult to know whether a particular combination
of values lies within the joint range of sampled predictor values. This extension does not offer any tools
to do so, either, so you simply need to be aware of the issue and consider whether your sample data are
appropriate for your prediction.
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A Warning About Regression with Spatial Data:

Although regression is a useful and powerful tool, it should be noted that some aspects of it often violate
basic regression assumptions. This problem is especially true with grid regression. The end results of
these violations would likely be that your estimated parameters (i.e. your slope, y-intercept and R-square
values) are probably a bit off, and in particular your true R-square value is likely to be less than the
calculated value. This may not be a problem in many cases because regression is still a good method for
identifying relationships between our independent variable and our predictor variables, and therefore
helps us to predict what our independent variable will likely be doing in different areas based on our
predictor variables. We do, however, have to be careful to report that there is some uncertainty about our
model because of these violations, and be cautious when our R-squared value is near the limits of what
we consider to be significant.

In particular, the violations are:

1. With grid regression, we did not measure at every point: The fact that we are using grids usually
implies that we know more about our independent variables than we actually do. We are
regressing data using sample points that completely cover the entire area, and it is rare that we
have actually measured all our variables at every one of these sample points. In fact, grids are
generally created by some interpolation method in which values are only measured at a few
points, and the rest of the region is estimated (or interpolated) based on the values at these
sample points. Different grids may even be generated from different sets of sample points, at
different resolutions, or by different interpolation methods. Therefore we are often not as certain
of the true variable values at each sample point as we would be if we actually measured at that
point.

2. Lack of Independence: Most statistical techniques assume that each sample point is
independent of the others, such that the values you measure at that point are completely
unrelated to those points around it. This is not the case with most spatial phenomena, however,
and the problem is even more pronounced with grid data. In fact, the interpolation methods often
used to generate grids rely on the fact that locations near a point are likely to be more similar to
that point than locations farther away, and the interpolation process uses that relationship to
estimate what the values should be in the locations that weren’'t measured. The concept that
points close to each other are often more similar than points that are far away is referred to as
“spatial autocorrelation”, and the degree to which a dataset is spatially autocorrelated can actually
be useful information in its own right.

One method to avoid spatial lack of independence is to build a semi-variogram and identify the
spatial separation distance at which spatial autocorrelation drops to an acceptable level. This
extension currently does not offer that option, although | would like to include it in a future
revision.

Additional Reading:

For those who would like to learn about regression in depth, there are many texts available that cover it
thoroughly. Two such texts that the author recommends are:

0 Applied Linear Statistical Models, 4" ed. by Michael H. Kutner, Christopher J. Nachtschiem,
William Wasserman and John Neter (1408 pages, published by McGraw-Hill/lrwin, 1996)

0 Applied Regression Analysis, 3" ed. By Norman R. Draper and Harry Smith (706 pages,
published by Wiley-Interscience, 1998)

There are also some interesting new developments in the field of spatial regression and the author
recommends the following texts for discussion:
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0 Geographically Weighted Regression: The analysis of spatially varying relationships. A. Stewart
Fotheringham, Chris Brunsdon and Martin Charlton. (269 pages, published by John Wiley &
Sons Ltd., 2002).

0 Quantitative Geography: Perspectives on spatial data analysis. A. Stewart Fotheringham, Chris
Brunsdon and Martin Charlton. (270 pages, published by Sage Publications, 2000).

For those who would like to learn more about spatial autocorrelation, some of the classic references are:

0 Spatial Statistics, by Brian D. Ripley (252 pages, published by Wiley Series in Probability and
Mathematical Statistics, 1981)

0 Spatial Autocorrelation, by A.D. Cliff and J.K. Ord (178 pages, published by Pion Limited, 1973)

0 Spatial Processes: Models and Applications, by A.D. Cliff and J.K. Ord (266 pages, published by
Pion Limited, 1981)
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A lot of people are afraid of heights. Not me - I'm afraid of widths.
Steven Wright

Manually Transforming Variables:

The model-building function in this extension allows you to apply several transformations to your predictor
variables automatically (see p. 16). However, it provides no functions to automatically transform your
response variable. If you need your response variable transformed, you will need to do this manually
prior to running the extension. For example, SPSS (1999) offers the following pre-defined curve-fitting
model designed to fit S-shaped curves:

InY = g, +ﬂ1i+g

You cannot apply this model automatically usmg this exten5|on because there are no means to transform

Y. However, you can manually transformY beforehand and then run the extension using the
transformed variable.

Transforming Variables in Themes and Tables
This function requires that you create a new field in your table, so you must open your theme attribute

table using the button if you are using a shapefile or theme.
1) Setyour table to Editable by clicking the “Table” menu, then “Start Editing”.

2) Add a new field to your attribute table by clicking the “Edit” menu, then “Add Field".
your new field is numeric and that it has a sufficient number of decimal places.

Make sure

3) Clear any current selection in your table by clicking the Clear Selection button .

4) Select your new field by clicking on the field name at the top of the table. It should have an inset

appearance.

5) Click the Calculate button to open the Field Calculator. If your Response field was named
[Y] and your newly-created field was named [nat_log_y], and you wished to perform a natural log
transformation, then you would fill out the Field Calculator dialog as follows:

i Field Calculator 1 x|
Fieldz Type Requests

[Shape] «| & Number IsMull B

(10 o |£SubclassOf

[] Lrn
p— O Co

[Paint_I0] b akerull |

[r-Hat] b ak.eF andam

[Fesidualz] j L LI
[nat_log ] =

VILn =

Cancel |

6) The list of “Requests” contains several other transformations you can apply to your field.

HINTS: If you wish to raise your response values to a power, then the calculation string would be:
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[Y]™(@aPower)
If you wish to transform by e" , then use the following calculation string:

Number.GetEuler([Y])

7) IMPORTANT: Make sure your values are appropriate for the transformation! For example, if you
apply a natural log transformation to negative numbers, you will get null values which cannot be
used in regression and which will trigger a “Singular Matrix” error (see Troubleshooting on p. 90).

8) Save edits by clicking the “Table” menu, then “Stop Editing”.

Transforming Grids:

This transformation will create an entirely new grid, and the new grid should be used in the regression
function in place of the original response grid.

1) Make sure your response grid is in your view.
2) Click the “Map Calculator...” menu item in the “Analysis” menu.

3) If your response grid is named “Precip_ann” and you wish to perform a natural log transformation,
fill out the Map Calculator dialog as follows:

! Map Calculation 1 3 =10] %]
| Logarithms |
[k 3
ITLE;ZH_air_temp] fa E Exp | Log |
[Precip_ann . Coure - Eup? | Log2 |
o 0] Co b ewn] ool
~ AisfGrid |
[ [Precip_ann).Log) -

Evaluate

4) There are several other transformation options available by clicking on the drop-down box in the
upper right corner of the window.

HINTS: To raise your grid values by a power, use the following calculation string:
[Your_grid]*(aPower)
If you wish to transform by e" , then use the following calculation string:
[Your_grid].exp

5) After the map calculator finishes, a new grid will be added to your view. IMPORTANT: This is a
temporary grid and will only be saved permanently if you save your project or specifically save
your dataset with the “Save Dataset” menu item (in the “Theme” menu).

- 56 -



If you want to inspire confidence, give plenty of statistics. It does not matter that they should be accurate, or even
intelligible, as long as there is enough of them.
Lewis Carroll

Field Summary Statistics:

This tool provides functions similar to those available in the basic ArcView “Statistics...” options under the
standard “Field” menu item in the Table menu, with the exception that there are both more options and a
higher level of precision used for any calculations. The tool may be used to generate statistics on either a
theme in a view or a field in a table.

Summary Statistics on a Theme:

I —
The button will only be enabled if the user has at least one feature theme in the current View. When
the user clicks the button, they will be prompted to identify the theme and/or fields for calculating the
statistics.

#2 Calculate Statistics: x|

Calculate Statistics For

% the selected features of = all features of
Themes Fields
Fanawria.zhp [l Airt_max

]

Af_watersheds_reqrezs 9 regres: Airt_mean

Af_watersheds. shp

Airt_rnir

Airt_range

Airt_ztd

- Airt_sum LI

|ghore W alues

[ Ignare I -3333

[Separate multiple values by commaz]

OUTFUT OPTIOMS: " Simple &+ Advanced

Cancel POk

Also, the user may choose to calculate statistics on either all the features or only the selected features. If
no features are selected, this tool will use all the features regardless of which option is chosen. The user
also may choose to calculate statistics on multiple fields at one time.

The user may specify certain values they do not wish to include in the analysis. For example, it is
common practice to designate some number to mean “No Data”, or to identify values not involved in the
analysis. Researchers often use -9999 or -99999 for this purpose, especially with datasets where such a
value would be impossible (e.g., elevation, population, area, etc.) The user may designate as many of
these values as desired by entering them into the “Ignore Values” section, and checking the “Ignore” box.

The user may choose between either Simple or Advanced output. Simple output includes the Sum,
Number of Features, Mean, Minimum and Maximum, and is reported in a text box:
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! Statistics for Airt_std [Af_watersheds. ﬂ

Statigtics Repaort; A watersheds. shp

|»

AIRT_MEAM: ---eeeeeeee-
Tatal 127970.7739
Mean: 23.5674
Firirnm: 0.0000
bl amirmurn; 301667
Mumber of Features: 5430

AIRT_RAMGE: —---rmeereev
Tatal 14583.0447
tean: 2 6563
birrnm: 0.0000
bl awirmurn; 30,3333
MHumber of Features: 5430

AIRT_STD: v <

Y T

Copy to Clipboard | Copy and Close | Cloze |

Advanced output includes the Sum, Mean, Median, Mode(s), Minimum, Maximum, Range, Standard Error
of Mean, Variance, Standard Deviation, Number of Features, and Number of Null Values, and is reported
in a histogram:

2 statistics for Airt_mean [Af_watersheds.shp] M=l E3 ! statistics for Airt_range [Af_watersheds.shp] [Hi[=] E3 i statistics for Airt_std [Af watersheds.shp]  [HI[=] E3
— 1] — 1] — 1]
1305 83 4502
%63 1244 2251
0. 0 T - 0
0 33519 100556 167593 23463  20.1686T 025634 77083 12.847217.9861 23.125 20833 0 09355 18712 28068 3.7425 46781 56137
Number of Bars: .. Redraw Nurmber of Bars: I 12 .- Redraw Murnber of Bars: .- Redraw
AIRT_MEAN: [5430 valugs] e AIRT_RANGE: [5490 values] AIRT_STD: —oeeeeen -]
Statistics Report: &f_watersheds.shp Statishics Report: Af_watersheds shp Tatal 3050.4318
tean: 0.5556
AIRT_MEAN: reeeeeeeee AIRT_RANGE: —meeeeeeeee Mediar: 0.32735
Tatal 127570 7733 Total 14583.0447 tode: 0.0000
tean: 23.5674 Mean: 2 6563 Finimum: 0.0000
Mediar: 24. 28065 Mediar: 1.54170 Mawinum: 5.6137
Mode: 25,9167 Mode: 0.0000 Range: 5.6137
Fimimumm: 0.0000 Minimurn: 0.0000 Standard Errar of Mean: 0.0087
b aimum: 30,1667 P asimum: 30.8333 Wariance: 0.4170
Range: 30,1667 Range: 30,8333 Standard Deviation: 0.6458
Standard Erlnr nf Mean 0.0491 LI Standard Error of Mean: 0.0436 LI Number of Features: 5490 LI
........ s anca: 10 A7 E canb b ll o aliae: OO0
. [ Airt_mean =] Close |Airt Tange 3| Close [ airt_std 3| Close

Although only one histogram window will be open, the user may choose which set of statistics to view by
choosing the field from the drop-down box at the bottom of the window. Also, the user may change the
number of histogram bars to display by clicking the up/down arrows and selecting “Redraw”. The red line
behind the histogram bars demonstrates how the bars should be arranged if the data were normally
distributed. In the above examples, the mean air temperature values follow the normal distribution better
than the range and standard deviation of air temperature values. The “R” button at the window’s bottom
left is the “Refresh” button, and can be used if the image becomes corrupted. Clicking this button will
redraw the image .

Summary Statistics on a Field in a Table:

The button in the Table button bar will be enabled only if a numeric field has been selected. This tool
will allow the user to generate a large number of statistics on the values within a given field The user
may choose from: mean; standard error of the mean; confidence intervals; minimum; 1* quartile; median;
3" quartile; maximum; range; variance; standard deviation; average absolute deviation; skewness
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(normal and Fisher's G1); kurtosis (normal and Fisher's G2); number of records; number of null values;
mode; and lastly, total sum for any attribute field(s) within a set of selected records.

This tool also allows users to break up the dataset into subsets based on one or more additional fields
and generate multiple statistics for each subset of data. For example, if a person had a table of county-
level statistics for all the counties in the United States, this tool would let them calculate a single set of
statistics for all counties combined, or separate sets of statistics for each state or region.

Users can use a single or multiple fields as classification fields to divide the data into subsets. If the user
chooses multiple fields, then this extension will develop a separate set of statistics for each unique
combination of classification values.

Begin by selecting the field containing your data, clicking the to open the “Field Statistics” dialog, and
setting your preferences:

i Field Statistics: x|

{~ Generate statistics on [Pop1930]...

{+ Generate statistics on subsets of [Pop1330], based on other figlds. .

i+ |lze all 3140 recards
i Usze selected records (411 of 3140 selected)

Cancel |

Generating Statistics on Multiple Subsets of Data:

Note that you have options to generate statistics on all data in the field or on subsets of that data. If you
choose to generate statistics on subsets of the data, you will next be prompted to specify the fields
containing your classification values. For example, if you wanted to analyze county statistics by state,
then you would need to specify the field containing the state names.

i Select and Sort Fields to Subset Data: x|
- fevailable Fields - - Selected Fields - T

M ame = State_name ;l %\
State_name Y E
State_fipz —

Chty_fips é
Fipz —
Area ﬂ E % |

Cancel | ] 4

Note that you may choose multiple fields and change their order. If you choose multiple fields, then this
extension will generate statistics for each unique combination of field values. The field order will not
change the statistics produced, but will change the order they are presented in the final report.

Click ‘OK’ and specify the statistics you would like to generate. These statistics are described in detalil
below:
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! Summary Sktatistics: ﬂ
tearn: Scale:

¥ iMean; WV Wariance
¥ Standard Desviation
¥ fwerage Deviation

v Std. Ermor of Mean
[~ Caonf. Limits for Mean

Eonf: Level: I— Shape:
¥ Skewness

Quarntiles and Bange: ———— | W Skewness [Fisher's G1]
w ¥ Kurtosis
@ First Quarti v Eurtosiz [Fizher's G2)
irsk Quartile
[ hiedis Other Statistics:
v Mode
v Third Quartile M
Iv Mumber of Rows
I Maimum ¥ Mumber of 'Mull' ¥alues
W Fange [v Total Sum
Cancel | Help | k.

Click ‘OK’ and the extension will generate a report:

# statistics Summary:

-» [State_name] = "Utak'; 29 recaords. ..

Ll |x

- [State_name] = ""Yermont': 14 records. .

-» [State_name] = ""irginia': 136 records...

- [State_name] = " azhington' 39 records. ..
- [State_name] = ""West Virginia": 55 records. .
-» [State_name] = "wWizconzin'' 72 records. ..
- [State_name] = "wiyoming'; 23 records...

-» [State_name] = "Alabama’’
-» B7 records...
Mean: BO307. 268656716420
Std. Error of Mean: 11525.335034330485
Minirmurm: 10753, 000000000000
1=t Quartile: 16534, 000000000000
Median: 32458, 000000000000
Jrd Quarkle: 5761 3.000000000000 ;I

Copy and Elnsel Cloze |

Generating Statistics on a Single Dataset:

If you choose to calculate statistics on all data in that field, you will next prompted to specify your statistics
in the Summary Statistics dialog. This version is slightly different in that here you have the option to
create a histogram if you wish.
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! Summary Sktatistics: ﬂ
tearn: Scale:
................ o p "v"ariance

..... t I: , r Vi tl
IV S d E”Dr of Mean w10
I' WETEIEIE DE"."iatiDn

[~ Conf. Limits for Mean e

Eaff Level I [T Skewness

[T Skewness [Fisher's G1]

Quantiles and Range: —— | T Kurtosis
™ Minimum [T Kurtasiz [Fisher's G2
[ First Quartile Other Statistics:
v Median IV hode
I Third Quartile b BT o ot
= v Mumber of "Mull' % alues
M

S v Total Sum

L Bies v Histograrn
Cancel | Help | k.

Choose the desired statistics and then click “OK.” If you selected the Histogram option, the output will
appear in a histogram as illustrated above. If the Histogram option was not selected, the output will

appear in a report window:

i Summary Statistics: _ ﬂ

Summary Statistics for Airt_range -
Mean: 2686612893326

Std. Error of Mean: 0.043566304952

M imirurn: 0. 000000000000

Median: 1.541 700000000

b amirnurn: 30.833:200000000

Maode: 0

Range: 300833300000000

Standard Desviation: 3.22831 905071

Skewnesz 2385167427056

Furtosis; 1046867785973 |

Copy to Clipboard Copy and Cloze Cloze

This tool may also be accessed with Avenue code, which enables more advanced users to pass these
statistics to variables, and then use the calculated values in other places. Please review Calculating
Summary Statistics with Avenue on p. 67 for details on accessing the Avenue script directly.

>x

1) Mean: Calculated as: =—
n

S

ﬁ,

2) Std Error of the Mean: Calculated as: s{Y} = where s = sample standard deviation




3) Confidence Interval: The confidence limits for population mean y with a confidence coefficient (1 —
a), given a sample population mean X, are calculated as:

X £t s{Y},
(1—%;n—1) {Y}
where s{Y} = i, s = Sample Standard Deviation
Jn
= istri i =(1-¢ —
and t(lf%nfl) = value from the t distribution at p = (1 A) and n -1 degrees of freedom.

4) Minimum: The lowest value in the data set.

5) Quartiles and Median: Those values at which at most (P)% of the data lie below the value and at
most (1 — P)% of the data lie above the value. There are different ways to calculate quartile values,
which produce similar but different results. Some methods draw the quartile values from the data set
itself, so that the value called the “quartile” will always be found in the data. This script uses a
different method which occasionally calculates a quartile value which represents the midpoint
between two values from the data set, applying the following algorithm:

Assuming the data have been sorted from lowest to highest:

Quartile 1 Index =(N +1)x0.25=Q()

Quartile 2 Index = (N +1)x 0.50 = Q(2)

Quartile 3 Index =(N +1)x0.75=Q(3)
If Q(N)is an integer, then:

Quiartile = Q(N)" Value
If Q(N)is not an integer, then:
R = that value at which R <N <R +1, and
(Q(R)" Value)+(Q(R +1)" Value)
2

Quartile =

6) Maximum: The highest value in the data set.
7) Range: Maximum - Minimum
Z(yi _y)z
8) Variance: Calculated as: Variance == 1
n —
Z(yi _)7)2
i=1

9) Standard Deviation: Calculated as: Std. Deviation = I
n -

n

2l -l

10) Average Deviation: Calculated as: Avg. Deviation =12+ —
n

11) Skewness: Measures the degree of asymmetry of the sample data around the mean.
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m

Skewness = ——,
3/2

mZ

Z(y| _)7)2
where: m, = 2" moment = 1=
n

Z(y| _)7)3
and: m, =3 moment = =
n

12) Skewness (Fisher's G1): There are alternative methods to calculate skewness measures of the data.
S-PLUS uses the Fisher’'s G1 variation, calculated as:

b -1
Fisher's G1= w
n-2

m
;2 (standard measure of skewness),
mZ

where: b, =

Z(yi _)7)2
and: m, =2" moment ==
n

Z(yi _)7)3
and: m, =3 moment = =
n

13) Kurtosis: Measures the “peakedness” or “pointedness” in a distribution, and calculated as:

) m
Kurtosis = —“2

2

Z(yl _y)z
where: m, = 2" moment = =
n
Z(y| —)7)4
and: m, = 4" moment ==
n

14) Kurtosis (Fisher's G2): As with Skewness, there are alternative ways to calculate kurtosis. S-PLUS
uses the Fisher's G2 variation, calculated as:

1)(n-1 -1
Fisher's G2 = (n+1)(n-1) b, _3(n )
(n-2)(n-3) n+1
where: b, = m42 (standard measure of kurtosis),
m2
Z(y| _37)2
and: m, =2" moment = 1= -
Z(y| _)7)4
and: m, = 4" moment = 1= .
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15) Mode: That value that occurs most often. There could be multiple modes or no modes in the data. If
no value in the dataset is found more than once, this option will report that no modes were found. If
no value occurs more than once, no mode is returned.

16) Number of Rows: The total number of rows of data examined during the analysis.

17) Number of ‘Null’ Values: The total number of cases of missing data. These are represented as “null”
numbers in the table, which are different than zeros.

18) Total Sum: Sum of all non-null values, calculated as: Zx

19) Histogram: This is a graphic illustrating the shape of the data and is useful for visually determining if
the data are normally distributed. You may change the number of vertical bars by clicking the
up/down arrows and then the “Redraw” button. The red line behind the bars shows how the data
would appear if they were perfectly normally distributed. The drop-down box at the bottom of the
illustration (containing the words “Airt_mean” in this example) shows the field that the statistics were
calculated from. If you generated this histogram from a theme in a view, you may have selected
multiple fields to calculate statistics from. This option allows you to choose which set of statistics to
view.

The button with the “R” in the lower left-hand corner is a Refresh button. If the histogram window
gets corrupted somehow, click the “R” button to regenerate it.

! statistics for Airt_mean [hik_leve_airt.dbf] [H[=] E3

L

TE93  0Ad422 1319391 158435 19.225

Mumber of Bars: I— .. Fiedraw |

AIRT_MEAM: [7133 values]
tean: 15.454424197392
Std. Error of Mean: 0027340305678
Minimum: ¥.233400000000
Median: 16.141700000000
b airnumn; 19, 825000000000
Maode: 182
Fange: 11.926600000000
Standard Dewiation: 2285043712479
Skewnessz: -0.131003591134
Kurtoziz: 2474288067371
Tatal Recards: 7133

| Zirt_mean
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The laws of probability, so true in general, so fallacious in particular.

Edward Gibbon

Probability Distribution Calculators:

#! Probability Distribution Calculator:

Test value: I 14

Dutput W alue: | 0137239231863

Calculate

- Diiztribution -

x| i Table Probability Distribution Calculato

Input alue Field | it _max

£+ Probahility [PDF] -
Chi-Square
= Curnulative Probability [CDF) Erponesntial
= Quantile (IDF; Inverse COF) F
Harmal Distribution Paranneters: Logistic:
Mean: |12_335 LogMarmal
St Dew: |1_334
Faizzan l
Help | Close |

LI €~ Probability [PDF)
% Curnulative Probability [COF)

- Diiztribution -

X

= Calculate
Save Dutput to Field: [~ Make Mew Field - 3|

Chi-Saquare
Exporential
F

Logistic

b ean: I']B

LogHomal

" Quantile (IDF; Inverse COF]
Marmnal Distribution Par ameters:
_| St Dew: |1_2213

Poizzoh

Help | Cancel

[ |
[
|

This extension includes two versions of a Probability Distribution Calculator, each of which calculate

distribution data based on a variety of distributions and parameters. The Probability Distribution

Calculator is started from within a View, and is opened by clicking on the button in the View toolbar.
You simply enter the input and parameter values, specify whether you are calculating Probability,

Cumulative Probability or Quantile values, and click “Calculate”, and the result appears in the “Output
Value” window. This calculator stays open until you close it and you can leave it open as you do other

things in ArcView.

The “Table Probability Distribution Calculator” is designed to work on all selected records in a table,
applying the distribution parameters to each value and saving the results to a field in that table. This

calculator is opened from within a Table by clicking on the button in the Table toolbar. Select the
field containing the “Input” values, then decide whether to create a new field or use an existing field to
save the “Output" values, then click “Calculate” to generate distribution values for all selected records.

The window stays open until you click “Calculate” or “Cancel”.

The Distribution functions included with this extension may be grouped in 3 categories. In general, the

Probability Density Functions return the probability that the Test Value = X given that particular
distribution. The Cumulative Distribution Functions return the probability that the Test Value < X, given
that particular distribution. The Quantile Functions (sometimes referred to as Inverse Density Functions
or Percent Point Functions) return the Value X at which P(X) = [specified probability], given that particular

distribution.
Functions and Probability Distributions
Distribution | Probability Density Function | Cumulative Distribution Function | Quantile Function
Beta PDF_Beta CDF_Beta IDF_Beta
Binomial PDF_Binomial CDF_Binomial IDF_Binomial
Cauchy PDF_Cauchy CDF_Cauchy IDF_Cauchy
Chi-Square | PDF_ChiSquare CDF_ChiSquare IDF_ChiSquare
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Exponential | PDF_Exp CDF_Exp IDF_Exp
F PDF_F CDF_F IDF_F
Logistic PDF_Logistic CDF_Logistic IDF_Logistic
LogNormal | PDF_LogNormal CDF_LogNormal IDF_LogNormal
Normal PDF_Normal_Simpsons CDF_Normal IDF_Normal
Poisson PDF_Poisson CDF_Poisson IDF_Poisson
Student’s T | PDF_StudentsT CDF_StudentsT IDF_StudentsT
Weibull PDF_Weibull CDF_Weibull IDF_Weibull

Equations for each function are included in the Distribution Functions, Parameters and Usages (p. 69),
but some of them do not have closed formulas which can be calculated and therefore must be computed
numerically. Those interested should refer to the references to find source code and computational
methods of calculating these functions. We recommend Croarkin & Tobias (date unknown) and
McLaughlin (2001) for illustrations of the various distributions, and Press et al. (1988-1997) and Burkardt
(2001) for computational methods. All of these sources are available on-line.

The descriptions in Functions, Parameters and Usages (p. 69) include four methods of utilizing each
function. The first method describes how to use the Probability Distribution Calculators to calculate
values. There are three additional methods available for programmers who may want to access the
functions through Avenue code. Simply copy the line of code exactly as written, substituting your
parameter variable names in the proper places.

Avenue Functions:

1) The first Avenue option sends your parameters to a central script called
“Regression_jen.DistFunc”, which checks for possible errors in the parameters (e.g. using a
negative value for Degrees of Freedom). If the script finds errors, it will halt operation and alert
you to the problem. If it doesn’t find errors, it forwards your parameters to the appropriate script
and returns the result. Users may want to review the script “Regression_jen.ProbDlogCalculate”
for an example of this option. IMPORTANT: Users should be aware this script only checks whether
the input values follow the rules described in Functions, Parameters and Usages on p. 69. It
doesn’t check for programming errors, such as sending a non-numeric value to the script.

2) The second Avenue option is similar to the first. It sends your parameters to a central script to
check for errors (in this case, “Regression_jen.TableDistFunc”), but it doesn’t halt operation if it
finds an error. Rather, it returns an error message (in String format) detailing the problem. We
recommend this option for cases in which the user wants to conduct calculations on a series of
values (i.e. records in a table), but doesn’t want the function to stop if it finds an illegal value (e.g.,
possibly a record with no data). This option would allow the user to insert an “if-then” statement
in their code to check if the result is a String or a Number. Numerical responses would indicate
successful calculations while String responses could be appended to a running report of
unsuccessful calculations. Users may want to review the script
“Regression_jen.ProbTabDlogCalculate” for an example of this option.

3) If you'd like to skip the error-checking routines, use the third Avenue option to send your
parameters to the relevant script directly.
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Calculating Summary Statistics with Avenue

The Summary Statistics tool collects a series of True/False and Numerical parameters from the user and
sends them to a script called “Regression_jen.prob_Stat_CalcFieldStats”, which does the necessary
calculations and returns a list of results. The tool then prints those results up in a Report window for the
user.

Avenue programmers can bypass the dialog and send values to the script directly if they wish, and then
they will have the desired statistics directly available to them in a list. For example, many statistical
calculations require such things as means, standard deviations, variances, quartiles, etc. The user may
want to generate these values early in a script and then use them in later calculations. The
“Regression_jen.prob_Stat_CalcFieldStats” script makes it simple to generate such values from data in a
table.

This option is a little simpler than the standard Avenue method for generating statistics, which is to create
a new file on the hard drive and then use the “Summarize” request to save statistics to that file. It also
offers a larger variety of statistical output, including such things as confidence intervals, standard error of
the mean, average deviation, and kurtosis/skewness values. This option is also a little slower on large
datasets, however, and it doesn’t divide up the dataset into subsets like “Summarize” does.

The function can be used with just a few lines of code:

ListOfResults = av.Run(*“Regression_jen.prob_Stat_CalcFieldStats”, {ListOflnputParameters,
theVTab, theField})

The object “theVTab” is a VTab object containing your data, and “theField” is a Field object in the
VTab, reflecting the field you want to calculate statistics on.

The “ListOflnputParameters” must contain 22 values, most of which are Boolean (true/false)
reflecting whether you want that particular statistic calculated. Note that the last value should be set to
“False”.

ListOfInputParameters = {CalcMean, CalcSEMean, CalcConlnt, Con_Level,
CalcMinimum, CalclstQuart, CalcMedian, Calc3rdQuart, CalcMaximum,
Calcvariance, CalcStandDev, CalcAvgDev, CalcSkewness, CalcSkewFish,
CalcKurtosis, CalcKurtFish, CalcCount, CalcNumNull, CalcSum, CalcRange,
CalcMode, False}
Where:
CalcMean: Boolean, True if you want to calculate the mean.
CalcSEMean: Boolean, True if you want to calculate the standard error of the mean.
CalcConlnt: Boolean, True if you want to calculate confidence intervals of the mean.
Con_Level: Number, 0<p <1, where p = probability=(1-a)
CalcMinimum: Boolean, True if you want to calculate the minimum value.
CalclstQuart: Boolean, True if you want to calculate the 1* quartile.
CalcMedian: Boolean, True if you want to calculate the median.
Calc3rdQuart: Boolean, True if you want to calculate the 3" quartile.
CalcMaximum: Boolean, True if you want to calculate the maximum value.
CalcVariance: Boolean, True if you want to calculate the variance.
CalcStandDev: Boolean, True if you want to calculate the standard deviation.
CalcAvgDev: Boolean, True if you want to calculate the absolute average deviation.

CalcSkewness: Boolean, True if you want to calculate the standard skewness.
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CalcSkewFish: Boolean, True if you want to calculate the Fisher’'s G1 skewness.
CalcKurtosis: Boolean, True if you want to calculate the standard kurtosis.
CalcKurtFish: Boolean, True if you want to calculate the Fisher's G2 kurtosis.
CalcCount: Boolean, True if you want to calculate the total number of rows of data.
CalcNumNull: Boolean, True if you want to calculate the number of null values.
CalcSum: Boolean, True if you want to calculate the sum.
CalcRange: Boolean, True if you want to calculate the Range.
CalcMode: Boolean, True if you want to calculate the Mode. .

ForHistogram: False, intended only for internal use.

When the script finishes, it will return a list of 19 values to you representing the various statistics you
requested. If you did not request a particular statistic, then it will not be calculated and the return list will
contain a “nil” object in it's place. Note that if you requested a confidence interval, the upper and lower
levels are returned as a separate list (S’d object in the Return List).

Return list: {Mean, Standard Error of Mean, {Lower Confidence Level,
Upper Confidence Level}, Minimum, 1st Quartile, Median, 3rd
Quartile, Maximum, Variance, Standard Deviation, Skewness,
Fisher’s Gl Skewness, Kurtosis, Fisher’s G2 Kurtosis,
Record Count, Number of Null Values, Sum, Range, Mode}

For example: If you had a table of population demographic data containing a field of Annual Income
values, and you were interested in the mean annual income plus a 95% confidence interval around that
mean, then you would set up the code as follows:

theDemographyVTab = YourTable.GetVTab

theField = theDemographyVTab.FindField(“Income™)

thelnputParameters = {True, False, True, 0.95, False, False, False, False,
False, False, False, False, False, False, False, False, False, False,
False, False, False}

theReturnList = av.Run(“Regression_jen.prob_Stat _CalcFieldStats”, {thelnputParameters,
theDemographyVTab , theField})

theMeanlncome = theReturnList.Get(0)

thelLowerConfidenceLimit = theReturnList.Get(2).Get(0)

theUpperConfidenceLimit = theReturnList.Get(2).Get(1)

All the objects in “theReturnList” will be “nil” objects except for the ones at indices 0 and 2. The Mean
will be at index 0, the Lower 95% Confidence Limit will be the first item in index 2, and the Upper 95%
Confidence Limit will be the second item in index 2.

In general, all the possible statistics can be obtained with the following lines of code. Simply copy and
paste the appropriate lines into your script:

theMean = theReturnList.Get(0)

theSEMean = theReturnList.Get(1)

if (Calculating_Confidence_lIntervals)
LowerCl = theReturnList.Get(2).Get(0)
UpperCl = theReturnList.Get(2).Get(l)

end

theMinimum = theReturnList.Get(3)

theQl = theReturnList.Get(4)

theMedian = theReturnList.Get(5)

theQ3 = theReturnList.Get(6)

theMaximum = theReturnList.Get(7)

theVar = theReturnList.Get(8)

theStdDev = theReturnList.Get(9)

theAvgDev = theReturnList.Get(10)

theSkew = theReturnList.Get(1l)

theFisherSkew = theReturnList.Get(12)

theKurt = theReturnList.Get(13)
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theFisherKurt = theReturnList.Get(14)
theCount = theReturnList.Get(15)
theNumberNull = theReturnList.Get(16)
theSum = theReturnList.Get(17)
theRange = theReturnList.Get(18)
theMode = theReturnList.Get(19)

Distribution Functions, Parameters and Usages

Probability Density Functions:

1.

PDF_Beta: This function returns the probability that the Test Value = X, assuming a Beta distribution
and the specified Shape parameters. This is the standardized Beta function, where Location = 0 and
Scale (upper bound) = 1. According to McLaughlin (2001), parameters Shapel and Shape2 can be
any positive value, but they rarely exceed 10. The function becomes nearly flat if the values get
much larger than this.

a) Parameters:
i) TestValue: Number
i) Shapel: Number >0
iii) Shape2: Number >0
b) Usages:
i) From “Probability Distribution Calculator”, select “Probability (PDF)” and Beta distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc", {“PDF_Beta”, {Test
Value, Shapel, Shape2}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc", {“PDF_Beta”,
{Test Value, Shapel, Shape2}})

iv) (Avenue): theProb = av.Run(“Regression_jen.prob_Stat PDF_Beta”, {Test Value, Shapel,
Shape?})

IS, +S,) s
L(S)I(S,)
where: y =Test Value, S, =Shapel, S, =Shape?2

and: T'(x)= J':tx’le’ldt

Beta PDF = a-y)>"

c) Function:

PDF_Binomial: The Binomial distribution is used when there are exactly two mutually exclusive
outcomes of a trial. This function returns the probability of getting X successes out of N trials, given a
probability of success = P.

a) Parameters:
i) # Successes: Integer=0
i) # Trials: Integer = 2, # Successes
iii) Probability of Success: Number (0=p =1)
b) Usages:

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Binomial
distribution.
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i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc", {“PDF_Binomial”,
{#Success, #Trials, Probability of Success}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc", {“PDF_Binomial”,
{#Success, #Trials, Probability of Success}})

iv) (Avenue): theProb = av.Run(“Regression_jen.prob_Stat PDF_Binomial”, {#Success,
#Trials, Probability of Success}})

B!
- |AYA-APRY
y!(B—y)!j ="

where: y = #Successes, A =Probability of Success, B = #Trials

¢) Function: Binomial PDF :(

PDF_Cauchy: This function returns the probability that the Test Value = X, assuming a Cauchy
distribution with the specified mean and standard deviation. The Standardized Cauchy distribution is
that with Location = 0 and Scale = 1.

a) Parameters:
i) Test Value: Number
i) Location: Number
iii) Scale: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Cauchy distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_Cauchy”, {Test
Value, Location, Scale}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“PDF_Cauchy”,
{Test Value, Location, Scale}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_Cauchy", {Test Value,
Location, Scale})

1

ﬂa{u(y:ﬂ

where: y = Test Value, A = Location, B = Scale

c) Function: Cauchy PDF =

PDF_ChiSquare: This function returns the probability that the Test Value = X, assuming a Chi-
Square distribution with the specified Degrees of Freedom. The Chi-Square distribution results when
v (where v = Degrees of Freedom) independent variables with standard normal distributions are
squared and summed (Croarkin & Tobias, Date unknown).

a) Parameters:
i) Test Value: Number =0
i) Degrees of Freedom: Number >0

b) Usages:
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i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Chi-Square
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc”, {“PDF_ChiSquare”,
{Test Value, DF}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”,
{*PDF_ChiSquare”, {Test Value, DF}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_ChiSquare”, {Test Value,

DF})
¥V
2 w2
Chi-Square PDF = ev—x
c) Function: ZZF(\;j

where: y =Test Value, S, =Shapel, S, =Shape2
and: I[(x)= J.:tx’le’ldt

PDF_Exp: This function returns the probability that the Test Value = X, assuming an Exponential
distribution with the specified mean. This script uses the 1-parameter version of the equation (i.e.
assuming Location = 0). The Standard Exponential Distribution is that which has Mean = 1.

a) Parameters:
i) Test Value: Number =0
i) Mean: Number >0

b) Usages:

i) From "Probability Distribution Calculator", select "Probability (PDF)" and Exponential
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_Exp”, {Test
Value, Mean}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“PDF_Exp”, {Test
Value, Mean}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_Exp", {Test Value, Mean})

¢) Function: Exponential PDF = %e_”

where: x = Test Value, S =Mean (or Scale Parameter)

PDF_F: This function returns the probability that the Test Value = X, assuming an F distribution with
the specified Degrees of Freedom. The F distribution is the ratio of two Chi-Square distributions with
ratios v, and v, respectively.

a) Parameters:
i) TestValue: Number =1

i) 1* Degrees of Freedom: Number > 1
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iii) 2 Degrees of Freedom: Number > 1
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and F distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_F”, {Test Value,
DF1, DF2}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {*PDF_F", {Test
Value, DF1, DF2}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_F", {Test Value, DF1, DF2})

A

rfVatVe |(Va 7)(‘%4
2 v,
F PDF = v
c) Function: NAANCAIRAS 2
2 2 v,
where: x =Test Value, v, =DF1, v, =DF2
and: T(x)= '[:t*’le’ldt

PDF_Logistic: This function returns the probability that the Test Value = X, assuming a Logistic
distribution with the specified mean and scale.

a) Parameters:
i) Test Value: Number
i) Mean: Number
iii) Scale: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Logistic distribution.

ii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc”, {*PDF_Logistic”, {Test
Value, Mean, Scale}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“PDF_Logistic”,
{Test Value, Mean, Scale}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_Logistic", {Test Value, Mean,

Scale})
L & (y EA]
¢) Function: Logistic PDF = — 5
ey
1+exp| ——
B
where: y = Test Value, A =Mean, B = Scale

PDF_LogNormal: This function returns the probability that the Test Value = X, assuming a
LogNormal distribution with the specified mean and scale. A LogNormal distribution occurs when
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natural logarithms of variable X are normally distributed. The Standard LogNormal Distribution is that
with Mean = 0 and Scale = 1. The 2-Parameter LogNormal Distribution is that with Mean = 0.

a) Parameters:
i) TestValue: Number =0
i) Mean: Number >0
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and LogNormal
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_LogNormal”,
{Test Value, Mean, Scale}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”,
{“PDF_LogNormal”, {Test Value, Mean, Scale}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_LogNormal", {Test Value,
Mean, Scale})

2
In(y)—A
¢) Function: LogNormal PDF =Lexp[—l(Lj ]

B« 27 2 B

where: y = Test Value, A =Mean, B = Scale

PDF_Normal: This function returns the probability that the Test Value = X, assuming a Normal
distribution with the specified mean and standard deviation. The Standard Normal Distribution is that
with Mean = 0 and Standard Deviation = 1.

a) Parameters:
i) Test Value: Number
i) Mean: Number
iii) Standard Deviation: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Normal distribution.

ii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc”, {*PDF_Normal”, {Test
Value, Mean, St. Dev.}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“PDF_Normal”,
{Test Value, Mean, St. Dev.}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_Normal", {Test Value, Mean,
St. Dev.})

B+/27 20 B

where: y = Test Value, A =Mean, B = Scale

2
c) Function: Normal PDF = 1 exp[—l(ujj
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10.

11.

PDF_Poisson: This function returns the probability that the Specified Number of Events = X,
assuming a Poisson distribution with the specified mean.

a) Parameters:
i) # Events: Integer =0
i) Mean: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Poisson distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_Poisson”, {#
Events, Mean}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“PDF_Poisson”,
{# Events, Mean}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_Poisson", {# Events, Mean})

exp * AY
y!
where: y = Test value, A = Expectation (mean)

¢) Function: Poisson PDF =

PDF_StudentsT: This function returns the probability that the Test Value = X, assuming a Students
T distribution with the specified Degrees of Freedom. A Student’s T distribution with 1df is a Cauchy
Distribution, and it approaches a Normal distribution when DF>30. Various sources recommend
using the Normal distribution if DF>100.

a) Parameters:

i) Test Value: Number

ii) Degrees of Freedom: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Student's T
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_StudentsT”,
{Test Value, DF}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”,
{“PDF_StudentsT”, {Test Value, DF}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_StudentsT", {Test Value,

DF})
r v+l Vet
2 y? | 2
Student's T PDF = ————[1+—
c) Function: Jv F(V] v
2
where: y = Test Value, v = Degrees of Freedom

and: T'(x) = .[:tx’le’ldt
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12. PDF_Weibull: This function returns the probability that the Test Value = X, assuming a Weibull
distribution with the specified Location, Scale and Shape parameters. The Standardized Weibull
Distribution is that with Location = 0 and Scale = 1. The 2-Parameter Weibull Distribution is that with
Location = 0.

a) Parameters:
i) Test Value: Number > Location
i) Location: Number
iii) Scale: Number >0
iv) Shape: Number >0
b) Usages:
i) From "Probability Distribution Calculator”, select "Probability (PDF)" and Weibull distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“PDF_Weibull", {Test
Value, Location, Scale, Number}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“PDF_Weibull",
{Test Value, Location, Scale, Number}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat PDF_Weibull", {Test Value,
Location, Scale, Number})

-A

c1 (y-AY
c) Function: Weibull PDF:(%)[%} exp[[ b ]]

where: y = Test Value, A=Location, B =Scale, C =Shape

Cumulative Distribution Functions:

1. CDF_Beta: This function returns the probability that the Test Value < X, assuming a Beta distribution
with the specified Shape parameters. This is the Standardized Beta function, where Location = 0 and
Scale (upper bound) = 1. According to McLaughlin (2001), parameters Shapel and Shape2 can be
any positive value, but they rarely exceed 10. The function becomes nearly flat if the values get
much larger than this.

a) Parameters:
i) Test Value: Number
ii) Shapel: Number >0
iii) Shape2: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Beta
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc”, {*CDF_Beta”, {Test
Value, Shapel, Shape2}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“CDF_Beta”,
{Test Value, Shapel, Shape?2}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Beta", {Test Value, Shapel,
Shape2})
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Beta CDF = 1(y,S,,S,) (From Press et al, 1997)
¢) Function: where: y = Test Value, S, = Shape 1, S, = Shape 2

B, (a:b) 1 X a1 b-1
B(ab) ~Blap)b ! GO

and: B(a,b)= [ t"}(-1)"dt

and: I(x,a,b)

CDF_Binomial: The Binomial distribution is used when there are exactly two mutually exclusive
outcomes of a trial. This function returns the probability of getting < X successes out of N trials, given
a probability of success= P.

a) Parameters:
i) # Successes: Integer=0
i) # Trials: Integer = 2, # Successes
iii) Probability of Success: Number (0 =p =1)
b) Usages:

i) From "Probability Distribution Calculator", select "Cumulative Probability (CDF)" and
Binomial distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“CDF_Binomial”,
{#Success, #Trials, Probability of Success}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {*CDF_Binomial”,
{#Success, #Trials, Probability of Success}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Binomial", {#Success,
#Trials, Probability of Success})

y ! . .
c) Function: Binomial CDF = Z(%}A' (1- AP
i\ —1)!

where: y = #Successes, A = Probability of Success, B = #Trials

CDF_Cauchy: This function returns the probability that the Test Value < X, assuming a Cauchy
distribution with the specified Location and Scale parameters. The Standardized Cauchy distribution
has Location = 0 and Scale = 1.

a) Parameters:
i) Test Value: Number
i) Location: Number
iii) Scale: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Cauchy
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {*CDF_Cauchy”, {Test
Value, Location, Scale}})
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iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“CDF_Cauchy”,
{Test Value, Location, Scale}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Cauchy", {Test Value,
Location, Scale})

c) Function: Cauchy CDF = L + itan‘1 (uj
2 B

where: y = Test Value, A = Location, B = Scale

CDF_ChiSquare: This function returns the probability that the Test Value < X, assuming a Chi-
Square distribution with the specified Degrees of Freedom. The Chi-Square distribution results when
v (where v = Degrees of Freedom) independent variables with standard normal distributions are
squared and summed (Croarkin & Tobias, Date unknown).

a) Parameters:

i) TestValue: Number =0

i) Degrees of Freedom: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
Chi-Square distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc”, {“CDF_ChiSquare”,
{Test Value, DF}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”,
{“CDF_ChiSquare”, {Test Value, DF}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_ChiSquare", {Test Value,
DF})

y(v X)
Chi-Square CDF = \22)

()

2

¢) Function: where: y =Test Value, S, =Shapel, S,=Shape2
and: T(x)= '[Owtx‘le‘ldt

and: y(x,y)= ontx‘le‘ldt

CDF_Exp: This function returns the probability that the Test Value < X, assuming an Exponential
distribution with the specified mean. This script uses the 1-parameter version of the equation (i.e.
assuming Location = 0). The Standard Exponential Distribution is that which has Mean = 1.

a) Parameters:
i) Test Value: Number =0
i) Mean: Number >0

b) Usages:
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i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
Exponential distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“CDF_Exp”, {Test
Value, Mean}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“CDF_Exp”, {Test
Value, Mean}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Exp", {Test Value, Mean})

X

¢) Function: Exponential CDF =1- e’
where: x = Test value, B =Mean (or Scale Parameter)

CDF_F: This function returns the probability that the Test Value < X, assuming an F distribution with
the specified Degrees of Freedom. The F distribution is the ratio of two Chi-Square distributions with
ratios v, and v, respectively.

a) Parameters:
i) TestValue: Number =1
i) 1% Degrees of Freedom: Number > 1
iii) 2" Degrees of Freedom: Number > 1
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
F distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“CDF_F", {Test Value,
DF1, DF2}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“CDF_F", {Test
Value, DF1, DF2}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_F", {Test Value, DF1, DF2})

c) Function: and: y = Test Value, S, = Shape 1, S, =Shape 2

B, (a,b) 1 J
B(a,b) B(ab)

and: B(a,b) = [ t*@-t)""dt

(From Croarkin & Tobias, Date Unknown; Press et al, 1997)

i (1-t)° dt

0

and: I(x,ab)

CDF_Logistic: This function returns the probability that the Test Value < X, assuming a Logistic
distribution with the specified mean and scale.

a) Parameters:
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i) Test Value: Number

i) Mean: Number

iii) Scale: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Logistic
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_DistFunc”, {“CDF_Logistic”, {Test
Value, Mean, Scale}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“CDF_Logistic”",
{Test Value, Mean, Scale}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Logistic", {Test Value, Mean,

Scale})
. - 1
c) Function: Logistic CDF = Ay
1+exp (_yj
B
where: y = Test Value, A =Mean, B = Scale

CDF_LogNormal: This function returns the probability that the Test Value < X, assuming a
LogNormal distribution with the specified mean and scale. A LogNormal distribution occurs when
natural logarithms of variable X are normally distributed. The Standard LogNormal Distribution is that
with Mean = 0 and Scale = 1. The 2-Parameter LogNormal Distribution is that with Mean = 0.

a) Parameters:
i) Test Value: Number =0
i) Mean: Number >0
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
LogNormal distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“CDF_LogNormal,
{Test Value, Mean, Scale}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”,
{*CDF_LogNormal, {Test Value, Mean, Scale}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_LogNormal”, {Test Value,
Mean, Scale})

I -A
LogNormal CDF = @[%J

where: y = Test Value, A =Mean, B = Scale

¢) Function:

and: cI)(x) = Cumulative Distribution Function of the Normal Distribution

-79 -



10.

CDF_Normal_Simpsons: This function returns the probability that the Test Value < X, assuming a
Normal distribution with the specified mean and standard deviation. Because the formula for this
function does not exist in a closed form, it must be computed numerically. This script uses the
Simpson’s approximation method (Stewart 1998, p. 421-424) to calculate a highly accurate estimate
of the Normal cumulative distribution function (accuracy to > 12 decimal places). The Standard
Normal Distribution is that with Mean = 0 and Standard Deviation = 1.

a) Parameters:

i) Test Value: Number

i) Mean: Number

iii) Standard Deviation: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Normal
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”,
{*CDF_Normal_Simpsons, {Test Value, Mean, St. Dev.}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”,
{“CDF_Normal_Simpsons, {Test Value, Mean, St. Dev.}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Normal_Simpsons", {Test
Value, Mean, St. Dev.})

~ Normal CDF = d)(u]
c) Function: B

where: y = Test Value, A =Mean, B = Scale
and: (I)(x) = Cumulative Distribution Function of the Normal Distribution

CDF_Poisson: This function returns the probability that the specified Number of Events will be < X,
assuming a Poisson distribution with the specified mean.

a) Parameters:
i) # Events: Integer =0
i) Mean: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Poisson
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“CDF_Poisson, {#
Events, Mean}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“CDF_Poisson,
{# Events, Mean}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Poisson", {# Events, Mean})

-80 -



7(y,A)

I'(y)

c) Function: where: y = Test value, A = Expectation (mean)

Poisson CDF =

and: T'(x)= j:tx‘le‘ldt

and: y(X,y)= _[Oytx‘le‘ldt

11. CDF_StudentsT: This function returns the probability that the Test Value < X, assuming a Students
T distribution with the specified Degrees of Freedom. A Student’s T distribution with 1df is a Cauchy
Distribution, and it approaches a Normal distribution when DF>30. Various sources recommend
using the Normal distribution if DF>100.

a) Parameters:

i) Test Value: Number

i) Degrees of Freedom: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and
Student’s T distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {*“CDF_StudentsT, {Test
Value, DF}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“CDF_StudentsT,
{Test Value, DF}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_StudentsT", {Test Value,
DF})

¢) Function: The CDF_StudentsT T Function is dependent on whether the test value is positive or
negative:

Liv Y1l i_y<o
2 \v+y®- 22

Student's T CDF =
1—5[ v Vl), t=y >0

2 \v+y2'2'2
where: y = Test Value, v =Degrees of Freedom
B, (a,b x
and: 1(x,a,b)= (@ )z 1 _fta’l(l—t)b’ldt
B(ab) B(ab)-°

and: B(ab)=[ t*'1-t)""dt

12. CDF_Weibull: This function returns the probability that the Test Value < X, assuming a Weibull
distribution with the specified Location, Scale and Shape parameters. The Standardized Weibull
Distribution is that with Location = 0 and Scale = 1. The 2-Parameter Weibull Distribution is that with
Location = 0.

a) Parameters:

i) Test Value: Number > Location
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i) Location: Number

iii) Scale: Number >0

iv) Shape: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Cumulative Probability (CDF)" and Weibull
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“CDF_Weibull, {Test
Value, Location, Scale, Number}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“CDF_Weibull,
{Test Value, Location, Scale, Number}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat CDF_Weibull", {Test Value,
Location, Scale, Number})

¢) Function: Weibull CDF =1—exp{ [ ? )
where: y =Test Value, A =Location, B =Scale, C =Shape

Quantiles (also referred to as Inverse Density Functions or Percent Point Functions).

1. IDF_Beta: This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the Beta distribution with the two specified Shape parameters. Because the formula for
this function does not exist in a closed form, it must be computed numerically. This script arrives at
the X-value through an iterative process, repeatedly testing X-values with the CDF_Beta function until
it arrives at P-value that is within 1x10 "*? units from the specified P-value (this usually takes between
30-60 iterations).

a) Parameters:
i) P-value: Number (02=2p=1)
i) Shapel: Number >0
iii) Shape2: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Beta
distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_Beta, {P-value,
Shapel, Shape2}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“IDF_Beta, {P-value,
Shapel, Shape2}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat_IDF_Beta", {P-value, Shapel,
Shape?2})
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y I'(S, +S,) = _y)Sz—l
1"(51)1"(82)
where: y =Test Value, S, =Shapel, S,=Shape2

and: T(x)= jowtx’le’ldt

Beta IDF = j
¢) Function:

IDF_Binomial: This function takes the specified probability and returns the value X such that the
Probability of getting (X — 1) successes < the Specified Probability. This function takes an iterative
approach to finding the correct X value, repeatedly trying different values of X until it reaches the
correct one. This iterative process rarely takes more than 25 repetitions.

a) Parameters:
i) P-value = Number (0z2p =1)
i) # Trials = Integer = 2
iii) Probability of Success = Number (0 = p = 1)Usages:
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Binomial
distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_Binomial, {P-value,
NumTrials, Probability of Success}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“IDF_Binomial, {P-
value, NumTrials, Probability of Success}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat_IDF_Binomial", {P-value, NumTrials,
Probability of Success})

Binomial IDF: Iterative Process, repeatedly testing values of y, such that:

c¢) Function: p= Z( B jA(l A

where: y = #Successes, A =Probability of Success, B = #Trials
Until: P(y —1) <User-Specified probability

IDF_Cauchy: This function takes the specified probability and returns the value X, such that P(X) =
P-value, given the Cauchy distribution with the specified location and scale parameters. The
Standardized Cauchy distribution has Location = 0 and Scale = 1.

a) Parameters:
i) P-value: Number (0=2p=1)
i) Location: Number
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Cauchy
distribution.
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ii) (Avenue): theX = av.Run("Regression_jen.prob_Stat_DistFunc”, {'IDF_Cauchy, {P-value,
location, Scale}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“IDF_Cauchy, {P-
value, location, Scale}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat IDF_Cauchy", {P-value, Location,

Scale})
. B
¢) Function: Cauchy IDF=A-——
tan(zp)
where: A =Location, B = Scale, p = Probability

IDF_ChiSquare: This function takes the specified probability and returns the value X, such that P(X)
= P-value, given the Chi-Square distribution with the specified Degrees of Freedom. Because the
formula for this function does not exist in a closed form, it must be computed numerically. This script
arrives at the X-value through an iterative process, repeatedly testing X-values with the
CDF_ChiSquare function until it arrives at P-value that is within 1x10 "*? units from the specified P-
value (this usually takes between 30-60 iterations). The Chi-Square distribution results when v
(where v = Degrees of Freedom) independent variables with standard normal distributions are
squared and summed (Croarkin & Tobias, Date unknown).

a) Parameters:
i) P-value: Number (02=2p=1)
i) Degrees of Freedom: Number
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
Chi-Square distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_ChiSquare, {P-
Value, F}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat TableDistFunc”, {*IDF_ChiSquare, {P-
Value, F}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat_IDF_ChiSquare”, {P-Value, DF})

YoV
2 2
Chi-Square IDF = J‘yl

dy
. o _Z (v
c) Function: 22 F(Zj

where: y =Test Value, S, =Shapel, S, =Shape?2
and: T(x)= '[:tx’le’ldt

IDF_Exp: This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the Exponential distribution with the specified mean. This script uses the 1-parameter
version of the equation (i.e. assuming Location = 0). The Standard Exponential Distribution is that
which has Mean = 1.

a) Parameters:

-84 -



i) P-value: Number (0=2p=1)
i) Mean: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
Exponential distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {"IDF_Exp, {P-value,
Mean}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat TableDistFunc”, {"IDF_Exp, {P-value,
Mean}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat IDF_Exp", {P-value, Mean})

Exponential IDF = —£In(1-p)
where: £ =Mean (or Scale Parameter)
and: p = Specified Probability

¢) Function:

IDF_F: This function takes the specified probability and returns the value X, such that P(X) = P-
value, given the F distribution with the specified Degrees of Freedom. Because the formula for this
function does not exist in a closed form, it must be computed numerically. This script arrives at the X-
value through an iterative process, repeatedly testing X-values with the CDF_F function until it arrives
at P-value that is within 1x10 "2 units from the specified P-value (this usually takes between 30-60
iterations). The F distribution is the ratio of two Chi-Square distributions with ratios v; and v,
respectively.

a) Parameters:
i) TestValue: Number =1
i) 1% Degrees of Freedom: Number > 1
iii) 2" Degrees of Freedom: Number > 1
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
F distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_F, {P-value, DF1,
DF2}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“IDF_F, {P-value,
DF1, DF2}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat_IDF_F", {P-value, DF1, DF2})
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FIDF=[" dx

. 0 v
¢) Function: r v, r v, 1+ﬂ 2
2 2 v,
where: x =Test Value, v, =DF1, v, =DF2
. _ [Pex-14-1
and: r(x)_jot e ldt

IDF_Logistic: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the Logistic distribution with the specified mean and scale parameters.

a) Parameters:
i) P-value: Number (0zp=1)
i) Mean: Number
iii) Scale: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Logistic
distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_Logistic, {P-value,
Mean, Scale}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“IDF_Logistic, {P-
value, Mean, Scale}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat IDF_Logistic", {P-value, Mean, Scale})

¢) Function: Logistic IDF=A+B In[lij
-P

where: p = Probability, A =Mean, B = Scale

IDF_LogNormal: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the LogNormal distribution with the specified mean and scale parameters.
Because the formula for this function does not exist in a closed form, it must be computed
numerically. This script arrives at the X-value through an iterative process, repeatedly testing X-
values with the CDF_LogNormal function until it arrives at P-value that is within 1x10 ™ units from the
specified P-value (this usually takes between 30-60 iterations). A LogNormal distribution occurs
when natural logarithms of variable X are normally distributed. The Standard LogNormal Distribution
is that with Mean = 0 and Scale = 1. The 2-Parameter LogNormal Distribution is that with Mean = 0.

a) Parameters:
i) P-value: Number (0zp=1)
i) Mean: Number >0
iii) Scale: Number >0

b) Usages:
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i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
LogNormal distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat_DistFunc”, {*IDF_LogNormal, {P-
value, Mean, Scale}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“IDF_LogNormal, {P-
value, Mean, Scale}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat IDF_LogNormal", {P-value, Mean,
Scale})

2
. y| 1 1(In(y)-A
¢) Function: LogNormal IDF = —exp| ——| ——— d
) g J-O B«27 p[ 2[ B y

where: y = Test Value, A =Mean, B = Scale

9. IDF_Normal: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the Normal distribution with the specified mean and standard deviation.
Because the formula for this function does not exist in a closed form, it must be computed
numerically. This script arrives at the X-value through an iterative process, repeatedly testing X-
values with the CDF_Normal_Simpsons function until it arrives at P-value that is within 1x10 "*? units
from the specified P-value (this usually takes between 30-60 iterations). Furthermore, there is no
closed formula for calculating the Normal cumulative distribution function, so this script uses the
Simpson’s approximation method (Stewart 1998, p. 421-424) to calculate a highly accurate estimate
(accuracy to > 12 decimal places). The Standard Normal Distribution is that with Mean = 0 and
Standard Deviation = 1.

a) Parameters:

i) P-value: Number (0=2p=1)

i) Mean: Number

iiiy Standard Deviation: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Normal
distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_Normal, {P-value,
Mean, St. Dev.}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat_TableDistFunc”, {“IDF_Normal, {P-
value, Mean, St. Dev.}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat IDF_Normal", {P-value, Mean, St.
Dev.})

. 1 1(y-AY
c) Function: Normal IDF = [’ exp| —=| ¥—— d
) J-O(B\/Zn p[ 2( B j )J Y

where: y = Test Value, A = Mean, B = Scale

10. IDF_Poisson: This function takes the specified probability and returns the value X such that the
Probability of getting (X — 1) events < the Specified Probability. This function takes an iterative
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11.

approach to finding the correct X value, repeatedly trying different values of X until it reaches the
correct one.

a) Parameters:
i) P-value: Number (02p =1)
i) Mean: Number >0

b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Poisson
distribution.

i) (Avenue): theProb = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_Poisson, {P-
value, Mean}})

iii) (Avenue): theProb = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“IDF_Poisson,
{P-value, Mean}})

iv) (Avenue): theProb = av.Run("Regression_jen.prob_Stat IDF_Poisson", {P-value, Mean})

Poisson IDF: lterative Process, repeatedly testing values of y, such that:

oo 7(v,A)
I(y)
¢) Function: where: y = Test value, A = Expectation (mean)

and: T(x)= _[:tx’le’ldt

and: y(x,y)= ontx’le’ldt

Until:  P(y —1) < User-Specified probability
IDF_StudentsT: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the Student’s T distribution with the specified Degrees of Freedom. Because
the formula for this function does not exist in a closed form, it must be computed numerically. This
script arrives at the X-value through an iterative process, repeatedly testing X-values with the
CDF_StudentsT function until it arrives at P-value that is within 1x10 ™ units from the specified P-
value (this usually takes between 30-60 iterations). A Student’s T distribution with 1df is a Cauchy

Distribution, and it approaches a Normal distribution when DF>30. Various sources recommend
using the Normal distribution if DF>100.

a) Parameters:

i) P-value: Number (0=2p=1)

i) Degrees of Freedom: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and
Student’s T distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_StudentsT, {P-value,
DF}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“IDF_StudentsT, {P-
value, DF}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat IDF_StudentsT", {P-value, DF})
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v+l e
y F( ) y' T
Student's TIDF =" —————|1+— dy
c) Function: - /ﬂvr(vj v
2

where: y = Test Value, v = Degrees of Freedom

and: T'(x) = Iowtx‘le‘ldt

12. IDF_Weibull: This function takes the specified probability and returns the value X, such that
P(X) = P-value, given the Weibull distribution with the specified Location, Scale and Shape
parameters. The Standardized Weibull Distribution is that with Location = 0 and Scale = 1. The 2-
Parameter Weibull Distribution is that with Location = 0.

a) Parameters:
i) Test Value: Number > Location
if) Location: Number
iii) Scale: Number >0
iv) Shape: Number >0
b) Usages:

i) From "Probability Distribution Calculator”, select "Quantile (IDF; Inverse CDF)" and Weibull
distribution.

i) (Avenue): theX = av.Run("Regression_jen.prob_Stat DistFunc”, {“IDF_Weibull, {P-value,
Location, Scale, Number}})

iii) (Avenue): theX = av.Run("Regression_jen.prob_Stat TableDistFunc”, {“IDF_Weibull, {P-
value, Location, Scale, Number}})

iv) (Avenue): theX = av.Run("Regression_jen.prob_Stat_IDF_Weibull", {P-value, Location,
Scale, Number})

c) Function: Weibull IDF = A+B¢/-Inp
where: p =Probability, A =Location, B =Scale, C =Shape
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Troubleshooting:

If you encounter some strange crash, please click the menu item “Check Regression Scripts” in either the
View, Table or Project Help menu. Click this as soon as you are able to following the crash. With any
luck, that function will generate a report with enough information for the author to find and fix the problem.

Otherwise, the problem may be found and explained below:

Problem: Extension Fails to Load, with the following error message:

x

Can"t convert 'LISTBOX SELECTION MULTIROW!
to enumeration.

Solution: This problem is caused by an outdated version of the Dialog Designer. For some reason,
some versions of ArcView 3 were shipped with an older version of Dialog Designer which didn't support
this "LISTBOX_SELECTION_MULTIROW" option (which basically means that a listbox on a dialog is set
so that you can select multiple items from the list).

ESRI has a newer version of the Dialog Designer available on their website for free download. Please
link to:

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetalD=483

Problem: Extension crashes in mid-operation, producing an obscure message stating that there is a
syntax error at or near symbol NL:

x

GRD ERROR - Syntax error at ar near zymbol ML

This is sometimes followed by the infamous Segmentation Violation message:

x

Sometimes ArcView crashes completely and vanishes without showing these messages; while other
times it vanishes after showing these messages. Sometimes it keeps working in an unstable state.
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Solution: There is no simple solution to this problem. It is due to a bug in Spatial Analyst which causes
SA to crash after approximately 32,500 grid operations or if SA tries to hold > 50 grids in memory at one
time. You can force the error to occur by writing a short script that checks the cell value at a particular
point, then loops over 32,500 iterations. You can also trigger it by running the Zonal Statistics function on
a point theme containing over 32,500 points or trying to do any grid operation that accesses > 50 grids.

| am unaware of a simple way to work around this problem. If possible, use smaller point data sets or try
to use fewer grids in your analysis. Alternatively, ArcGIS 9 is expected to fix this problem.

Problem: Extension stops in mid-operation, producing an error message stating that there is a singular
matrix error:

i Singular Matrix Error: Ej

Singular M atrix errar in ‘Regreszion_jen. MatrisL D ecomp'l
Operation cancelled...

A couple of issues could cause this:
1. If there is something unusual about your data that makes it impossible to invert the matrix of
predictor values [(X'X)ﬂ , then the matrix is considered “singular” and the regression analysis

cannot continue. This issue might arise if all your response values corresponded with the exact
same predictor value so that the scatterplot looks like a column of points. In this case, there are
really an infinite number of equally valid regression lines, all going through the same midpoint and
all having different slopes.

2. This error can also be triggered if you are using invalid data. For example, if you have negative
values in your predictor data and you attempt a log transformation (which is impossible; you can't
take logs of negative numbers without resorting to complex imaginary numbers, and ArcView
doesn’t do imaginary numbers), then the script will react as if you sent it a singular matrix.

Solution: There is no solution if you are genuinely using a singular matrix. Some data are simply not
appropriate for regression analysis.

Problem: Extension produces an error message in a DOS window stating that there is an “Error calling
unlink” for some particular file. The extension continues operating and the analysis completes
successfully. The DOS window stays open until ArcView is shut down.

Error calling unlink for file c:%esrivav_gis3Bsarcuviewsl_jeffscripts \cunf‘ultatluu
nsunited_nationssregressionsp_sg5 . dbf
Returned error code 13

Error calling unlink for file c:swesrivav_gis3Bsarcuviewsl_jeffscriptssconsultatio
nsunited_nationssregressionsp_sgb . dbf
Returned error code 13

This error is triggered when ArcView attempts to delete a file and is unable to do so. For some reason
the ArcView programmers decided to alert you to this problem by saying that there was an “error calling
unlink” for that file rather than simply saying it could not be deleted, which | assume means that ArcView
believes that some other program is using that file.
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The files this extension attempts to delete are temporary statistics tables used to report grid statistics.
This extension generates the files, examines the data and adds them to the report, then deletes the files.
There is usually no problem, but occasionally one of the files can't be deleted.

Solution: This isn’t really a problem and there is no solution that | have been able to figure out. | don’t
know why ArcView is occasionally unable to delete the statistics file. The extension will continue to
operate normally and you can minimize the DOS window if you do not want to see it. The worst thing that
happens is that you get a small unwanted file sitting on your hard drive, adding to the general clutter of
files. You can easily delete the file manually using Windows Explorer

Problem: Unable to find grid in a directory, even though you know it is there.

Solution: This is probably due to a space or invalid character in the pathname. For some reason,
Spatial Analyst doesn’t recognize a grid if it lies in a folder with a space or period in it. For example, if you
store your grids in the standard default Windows directory “My Documents,” you will probably not see the
grid listed in the “Add Theme” dialog at all. The “Add Theme” dialog will show you all the shapefiles and
images, but no grids. The only solution is to move your grid to a different file location where it does not lie
in a path with invalid characters.

Problem: You load your grids but you are unable to do any calculations on them. They don't act like
grids.

Solution: You may have loaded them as images. Grids can be loaded as either images or grids, and
you can’t do any of the grid functions on them if you have loaded them as images. Try adding them to
your view again, but make sure that you have “Grid Data Source” selected instead of “Image Data
Source”.

Problem: Extension crashes in mid-calculation, with the message:

x

Solution: This error may be caused by either a corrupt INFO directory or if your working directory
pathname is too long. | am unaware of the exact pathname size that triggers the error, but | think it is
around 80 characters. if you have over 80 characters in your pathname and you see this error, then you
can probably avoid it by changing your work directory to someplace closer to the root.
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Revisions:

Version 3.0 (August 13, 2005)
e Adds functions to build custom models and conduct multiple regression analyses.
Version 3.1 (September 8, 2005)

e Corrects a bug that produced an error message stating that “Assertion ‘Positive buffer size’
failed.

e Corrects a bug triggered by applying an inverse transformation to a predictor grid.

e Modifies the Field Statistics tools so that you can generate statistics on multiple subsets of your
data, based on one or more category fields.

e Makes several minor formatting changes to the regression report.

e Adds tools to the regression and scatterplot GUI allowing you to describe your model and to
predict new observations using that model.

e Adds tools to the scatterplot GUI allowing you to modify and enhance the graphic attributes of the
plot.

Version 3.1a (September 22, 2005)

e Again corrects a bug that produced an error message stating that “Assertion ‘Positive buffer size’
failed. This error appears to only affect ArcView 3.2a and earlier installations.

Version 3.1b (October 12, 2005)

e Corrects a bug which may say either “Variable theLinkText has not been initialized” or “Variable
theConfBandTheme has not been initialized”, and which was related to generating a scatterplot
without generating confidence bands.

e Corrects an issue related to Grid-based regression scatterplots, in which the scatterplot point X-
coordinates were close, but not exactly equal to, the predictor values in the point attribute table.

e Corrects another issue related to Grid-based regression scatterplots in which the analysis was
constrained within a polygon, in which the X- and Y-scales were incorrect.

Version 3.1c (February 18, 2006)

e Corrects a bug which appears to occur only on Asian or Chinese installations of ArcView. The
problem was that | used some unusual characters in the Avenue code, which caused ArcView to
crash when the extension was loaded on a Chinese computer.

Version 3.1e (August 29, 2006)

e Corrects a bug which appears when you conduct grid regression and do not choose to calculate
confidence bands or intervals, producing a message stating that ArcView cannot convert a string
to a number.

e Added functions to check the extension scripts. These functions are added as menu items in the
View, Table and Project “Help” menus.
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Planned Modifications:

1.

SEMI-VARIOGRAMS: Write functions to generate semi-variograms for themes and grids. These
semi-variograms are extremely useful for determining how spatially autocorrelated the data are,
and what sample point separation distance is best to avoid that autocorrelation and therefore
meet the assumption of sample independence.

LoaIsTIc REGRESSION: Include functions to perform binomial logistic regression, which is a very
useful method to analyze binomial phenomena (such as whether a point on the landscape is or is
not useful habitat.

SPATIALLY-WEIGHTED REGRESSION: | would like to learn more about spatially weighted regression
and make it available within this extension.

TRANSFORM RESPONSE VARIABLE: The extension currently offers several transformations of
predictor variables, but sometimes the best model is one which transforms both the predictors
and the response. You can always transform the response variable manually prior to running the
analysis (see Manually Transforming Variables on p. 55), but it would be more convenient to do it
within the analysis itself.

Add AIC (Akaike Information Criterion) values to reports.
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Enjoy! Please contact the author if you have problems or find bugs.

Jeff Jenness jeffi@jennessent.com
Jenness Enterprises http://www.jennessent.com &
3020 N. Schevene Blvd. (928) 607-4638 Yenness
Elg%staff, AZ 86004 Enterprises

Updates to this extension and an on-line version of this manual are available at

http://www.jennessent.com/arcview/regression.htm

Please visit Jenness Enterprises ArcView Extensions site for more ArcView Extensions and other
software by the author. We also offer customized ArcView-based GIS consultation services to help you
meet your specific data analysis and application development needs.

—
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