Script and Dialog Tools

Version 2.0016, Last revised April 2, 2007
Torics: ArcView 3.x, Script, Dialog, ODB, Project, View, Table, Extension
Aka: script_tools_jen.avx
AUTHOR: Jeff Jenness

Wildlife Biologist, GIS Analyst Email: jeffi@jennessent.com
Jenness Enterprises Web Site: http://www.jennessent.com
3020 N. Schevene Blvd. Phone: 1-928-607-4638

Flagstaff, AZ 86004 USA

DEeSCRIPTION: This extension automates many of the functions | use regularly when I’m writing
scripts or dialogs, plus provides several additional functions to most interfaces. In short, it offers
the following:

1) Project tools: Tools to save all new scripts, dialogs, tools, buttons and menu items to an
object database, and also to extract those objects into a new project. Includes a tool to
open dialog editor documents (*.ded files) and a tool to copy complete documents (i.e.
Views, Layouts, etc.) and to easily back up your project file.

2) Dialog tools: Tools to help you create, save and maintain dialogs, rearrange the control
tab order, generate basic scripts and tedious code, and produce reports describing all
aspects of your dialogs. Also generates several standard dialogs automatically.

Version 2.x includes tools to help convert existing ArcView 3.x dialogs into VB6 Forms.

3) Script tools: Tools to compile all scripts, close all scripts, shrink all scripts, shrink
individual scripts, and search all scripts for specified text. Also generates a variety of
new scripts and code snippets automatically and generates reports describing
interrelationships between scripts. Also provides keystroke shortcuts to find text, shift
script text to the right or left, comment/uncomment code, and select all text in the script.
Also provides a tools to send you to a particular character location in your script, and to
describe and number your script. Several tools to identify errors in the project.

Version 2.x includes tools to analyze and export VB6 Projects.

4) Table tools: Tools to delete multiple fields, identify table source and linked table
sources, describe field information, add record number fields and unjoin tables. Also
generates code that would either find or make fields identical to those in the table. Also
provides an “Unlink” button and tools to export and import tables from Excel.

5) View tools: Tools to show all theme legends, hide all theme legends, set all themes active
or inactive, and generate graphic color bars of a theme legend to enhance layouts or
legends. Also a button to undo the “Undo Zoom” function, and several tools to convert
theme shape types and to convert graphics to themes.

REQUIRES:

This extension requires that the file "avdlog.dll" be present in the ArcView/BIN32 directory (or
$AVBIN/avdlog.dll) and that the Dialog Designer extension be located in your ArcView/ext32
directory, which they usually are if you're running AV 3.1 or better. The Dialog Designer

mailto:jeffj@jennessent.com
http://www.jennessent.com/

doesn't have to be loaded; it just has to be available. If you are running AV 3.0a, you can
download the appropriate files for free from ESRI at:

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25& Metal D=483

ReEcoOMMENDED CITATION FORMAT: For those who wish to cite this extension, the author
recommends something similar to:

Jenness, J. 2007. Script and Dialog Tools (script_tools_jen.avx) extension for ArcView 3.x, V.
2.0. Jenness Enterprises. Available at:
http://www.jennessent.com/arcview/script_dialog_tools.htm.

Please let me know if you cite this extension in a publication (jeffj@jennessent.com). I will
update the citation list to include any publications that I am told about.

Table of Contents
GENERAL INSTRUCTIONS: 111ttttieetiiiiittrreeeteeessiaistssseessssssaiisssssssesssssssmsssssssesssesssmisssssseesesssnnssnes 3
PROJECT BUTTONS: @‘ﬁ“ﬁ’ ... 3
PROJECT IMENU ITEMS: ...ttt e et e s e e b e e e e e nneennneeneennneas 4
[=
piacoc Burrons: (BT E ElEEIES@ILAR 4
DIALOG MENU ITEMS: ..ttt sttt et e it e e nbb e e s e e e e nneeanes 20
SCRIPT BUTTONS: (1523 = e o "% | .. 25
SCRIPT IMENU ITEMS: ...ttt bbbttt bbb et esre e e be e beeenbe e 29
TABLE BUTTONS: @‘% ... 44
TABLE IMIENU ITEMS: ..oeiiiiiiiiiiiiiiieteeeeeeeeeeeseeeessesesesssasssssssesessssssssssssssssssssssssssssssssssesssssnsnsnssenes 45
VIEW BUTTONS: ‘@ ... 48
VIEW IMENU ITEMS: 1ouvttuvuuuuuuunerssnsusssnns 48
IVIOD IFICATIONS. ...ttt ekttt ekttt ekt e e ekt e et e b e e st e b e e e me e e b e e e s e e e b e e e mn e e b e e e nneebeennneenneeanneas 52
APPENDIX: SCRIPTS GENERATEDciitiiitteateesiteateesieeatessseeassessssesssessssssssesssnesssessssesssesssnens 57
S E LY o BT (o]0 R Tel £ oS TTUTRROSRP 57
IMUIEICNOICE SCHIPLS: ..ttt bbbt bt s e e e b ekt e bt b e e be e bt e e et e nbesbe et e neeneeneneas 57
e oTo o\ (=] (T T] o] £SOV 61
Theme and 1D FIeld SCIIPLS: ...cviiiii ettt bt e e beete e e et eseesbestesbeereeneeneeseens 65
L oTo A T[]0 ST] o] £ R 67
I A D 1o o IS ol] o] £ SRS SS 69
Yo = o] LI 1S o]) PSSR 71
L Fo Yol o o[-0t T TR] o] £SO 79
Create VTabh and FTah SCIIPIS: ..ottt bbbt e 82
Generate Random NUMDET SCIIPLS:cuviuiiiiiiieiriere bbbt 84
Generate Normally-Distributed Random NUMDEr SCHPLS:ccveiiiriiiiiieiecre e 84
Generate ‘Insert COmMmas iN NUMDEE” SCIPLS:c.viiiiiiiiieie sttt e e 85
Make Measurement Unit DICtIONAIES SCIPL:.......cc.iiiiiiiiieii ittt et bbb e 87
GEOMELIIC FUNCLION SCIIPES: ..ttt ettt sttt b e s bt bbbt e bt et e bese e s be st ebe st e e neeneennens 87
VB COUE GENEIAEA:veiveieieiteietiite et st e sttt st et sttt b et e be e e s e e be s b e s e s be st ebeebe st e b e s be e ebesbe e abe st e st ebenbeneans 110

http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.viewPatch&PID=25&MetaID=483
mailto:jeffj@jennessent.com

General Instructions:

1) Begin by placing the "script_tools_jen.avx" file into the ArcView extensions directory
(../../Av_gis30/Arcview/ext32/).

2) After starting ArcView, load the extension by clicking on Eile --> Extensions... , scrolling
down through the list of available extensions, and then clicking on the checkbox next to the
extension called "Script/Dialog Tools."

Project Buttons:

This extension adds three buttons to the Project button bar:

The button saves things into an object database. It also cleans and compiles all scripts
and dialogs before saving them. Click it and you’ll see the following dialog (at the moment it
doesn’t save tool menus):

i Save Dbjects to DDE:

Fleaze select which of the follawing objects pou wish to zave:

v Scrpts [+ Tools
¥ Dialogs [+ Menu ltems
¥ Buttons

v Only zave scrpts/dialogs that contain specific text in name?

Mame Contaitis; IF,&,D_WHD

Cancel | [k,

This is a useful function if you want to take all your tools, buttons, menus, scripts and dialogs
and put them into a fresh new project file (for example, if you want a clean project file to use for
building an extension).

The button extracts all the scripts, dialogs, buttons, tools and menu items from the object
database and installs them into your current project. It won’t install a component that already
exists, so you shouldn’t get multiple copies of the same script or button.

The % button opens a Dialog Editor document file (*.ded file) on the hard drive. This is

the same function as the EI button in the Dialog Editor button bar, but the advantage of offering
it in the Project button bar is that you don’t have to create a new empty dialog before you can
access the button.

Project Menu Items:

Eroject Script/Dialog Toolz
Hew Project Chrl+ Properties. .. Extract Scriptz from Files...
Open Project... Lustomize... Make Project File Portable...
Llose Project Hename "Wiewl'... Ctrl+R
[
Save Project Chrl+5 Copy Viewl'.. .

= m
e

| Backup Project File Chd+B J Add Table...

O T —

Del

Lrnpart. .

Estenzions. .. SCL Connect...

Exit

Save Scriptz, Dialoge, etc. to ODB...

Eutract Scripts, Dialogs, ete. from QDB file...

Backup Project File: This saves a copy of your current project file to a new name in the
same directory as your current project file. It appends the date and time to the new name.
For example if your project was named “this_project.apr” and you clicked the backup
function at 10:30:23 on June 20, 2003, this function would save a copy of the current
state of your project to “this_project_06202003 _103023.apr”. This function does not
save the current state of your project to “this_project.apr” though! Use [Control]-S for
that. This function is repeated in the File menu of all the documents..

Copy ‘Document Name’: This makes a copy of the current selected document (“Viewl”
in the illustration) and pastes it into the project. In this example, clicking this menu item
would generate a new View in your project named “Viewl copy”, which would have all
the same themes, graphics, etc. as “View1” did.

Save Scripts, Dialogs, etc. to ODB...: This function is identical to the button
described above.

Extract Scripts, Dialogs, etc. from ODB file...: This function is identical to the
button described above.

Extract Scripts from Files: Lets you extract scripts from Project files (*.apr), Extensions
(*.avx), Avenue source code (*.ave), Object Database files (*.odb) and text files. You
can choose multiple files at one time and this tool will query you as to which specific
scripts you want to extract.

Make Project File Portable: Goes through a project file and replaces any pathnames
(except those referring to a relative location, like SAVHOME) with relative pathnames,
referring to a single folder of data that will be distributed with the extension. If the data
is not already in that folder, this function will copy the data into the folder as it modifies
the path

Dialog Buttons:

This extension adds 11 buttons to the Dialog button bar:

The ﬁ button compiles all dialogs.

The button is a modified version of the “Save Dialog” function. The difference is that it
does a much more extensive search for attached scripts, plus it has a different suggested default
name for the extension. Regarding the scripts, it goes through all attached scripts, then looks for
all scripts referenced by those scripts, then continues digging for referenced scripts until it’s gone
through a maximum of 30 levels. It takes a little longer than the original version of the button,
but I think it’s worth it.

The button lets you generate one of five basic dialog types. Click this button and you’ll
be prompted to specify which dialog type to create:

! Click on Dialog Type to make: x|

B azic Dialag with 'O and 'Cancel’ buttonsz. .

Script to generate MultiChoice Dialog...

Progresz Meter Dialog...

Select Theme and 1D Field Dialog...

Report Dialog with Clipboard Options...

Lizt Dialog with Meszage, Liztbox options...

Build Lizt Dialog, Sortable with Add/Hemove

Select Dezired Projechion Dialog

Select Folder Dialog

Select Color Dialog

Cancel |

Basic Dialog with ‘OK’ and “Cancel’ buttons...: The first option simply makes a new
basic dialog containing an “OK” and a “CANCEL” button with attached scripts that close the
dialog. It also makes Dialog Open, Close and Activate scripts and attaches them to the dialog.
When you click on the button, you’ll be queried for the name of the dialog and the title to appear
on the dialog. Your new dialog will be automatically created, compiled and added to your
project. You have the option to create generic scripts for the Dialog Open, Activate and Close
events and the OK/Cancel button Click events. The generic Open script centers the dialog and
identifies the OK and Cancel buttons. The generic Close script sets all object tags to nil. You
also have the option to make the dialog modal and/or resizable. The generic Cancel button sets
the modal result to nil if the dialog is modal.

Specify New Dialog Parameters:

Dialog Editor Mame: IJennessent.SampIeDialog

Title Bar: | Sample Dialog

ke Bazic Scripts for Following Events:
¥ Open Dizlog

[V Close Dizlog
I~ Activate Dizlog

¥ Click OK Button

¥ Click Cancel Button

v Madal

" Resizable

Cancel

#2 Jennessent SampleDialog

Sample Dialog

oK |
Cancel |

’; HNew Documents:

DIALOGS:

SCRIFTS:

Jennessent. S ampleDialog

The following documents have been added ta your project:

Jennessent. 5 ampleDialogOpen
Jennessent. 5 ampleDialogClose
Jennessent. 5 ampleDialogCancel
Jennessent. S ampleDialogOk,

& script_tools.apr

Ll

Jennessent. DeleteMultipleFields

Jennessent ExtractS cripteDialogs

Jennessent. GlobalFind

Jenneszent LigtDialogComponents

Jennessent. M akeMewDialog

Jenneszzent. b aket ewDialogGetP arametersCance
Jennessent M akeMewDialogGetP arametersCloze
Jenneszzent b akeM ewDialoghietP arametersOF,

- oS gt arEters0pen
Jenneszzent. SamplelialogCancel
Jennessent SampleDialogClose
Jenneszzent. S ampleDialogOk,
Jennessent. SampleDialogOpen y
Jenneszent SaveSenptzlhalogsControl:ToODB
Jennessent. SaveTo0DECancel
Jennessent SaveToODBOK
Jennesgent. SaveToODBDpen
Jennessent SaveToDDER estrict
Jenneszent T ableField DU pdate
Jennessent. TableGetS ource
Jenneszent. TableGets ource?

Jennessent. TableMenuShowFieldT ypes
Jennezzent TabletenuShowSelectedFieldType
Jennessent ViewAlT hemesbctive

Jennezzent ViewalT hemezHidelegend

Jennessent ViewAlT hemeslnactive

Jennezzent ViewalThemezShowlegend
Jenneszent ViewCheckForThermes e
Scptl

Script2

Secpt3

wiriteDialog.ModifiedCloge

wiiteDialog. ModifiedFileB rowszer =l

See “Basic Dialog Scripts” in the appendix for examples of these scripts.

Script to generate MultiChoice Dialog: This option doesn’t actually produce a Dialog
Editor in your project, but rather a script that you can call to generate a MultiChoice dialog on
the fly. This multichoice dialog is kind of a cross between the “Multilnput” message box and the
“Choice” message box. It has multiple drop-down boxes generated from a set of lists that you
send to it. This option also generates a script of sample code to show you how to use the
function. Click this button and you’ll be prompted for the name you would like to call the script:

i Enter Mame for Mew Script:

Enter Mame for Scrpt: IJennessent.SampleMuItiEhDice

Thiz function will generate a zcript that produces a multiChoice =]
mezzage box, similar to the 'mzgB ox. Choice' object but with
multiple drop-down ligtz. Thiz function will alzo produce zample
code to call the MuliChoice box that you can paste inko wour
zonpts.

Enter a name for thiz zoript. The zample code will be in a script
named "'[vaur_script_name]_sample code',

OF.

L]

When you click the “OK” button you’ll see a list of the scripts that were added to your
project:

i Mew Documents:

The fallawing documents have been added to vour project: =

SCRIPTS:
Jenneszzent. SampletuliChoice
Jenneszzent. SampletultiChoice_zample_code

L]

Review the “Sample Code” script for some examples on how to use this script. Essentially
you send 4 objects to the script consisting of a message, a title, a list of labels and a list of lists
for the drop-down combination boxes. The script then generates a MultiChoice dialog on-the-fly
based on how many lists you send it. The lists of objects for the drop-down listboxes can contain
any type of objects. They are not limited to string or number objects.

For example, if you had a list of 6 states and wanted to let the user select from a drop-down
list for each of these states, you could use the following line of code to return the 6 selected
values:

theChoices = MsgMultiChoice.Dolt({theMessage, theTitle, theListOfLabels, theListOfLists})

The script would then generate a MultiChoice dialog with 6 drop-down boxes:

#2 This iz a sample MultiChoice Title:
Thiz iz a zample meszage:
] 4
Aizona | 5 =] Cancel
Mew Merico | 25 =
California [15 |=]
Utah [0 =
Colorado | 5 =]
Mewada §

If you run the Sample Code script, it will show you a report of the 6 values you chose. This
is not a function of the actual MultiChoice script, but rather just an illustration of it’s use. You
can do anything you want with the selected list of items. This dialog is also resizable by
dragging on a corner, so you can expand the dialog if the list items or labels are too long to fit on
the screen.

#2 Report of Choices:

Arizona: Choice =5 =
Mew Mexico: Choice = 25
California; Choice =15
IJtah: Chaice =10
Colorado: Choice = 25
Mevada: Chaice =10

L]

See “MultiChoice Scripts” in the appendix for examples of these scripts.

Progress Meter Dialog...: This Progress Meter is a modeless dialog you can incorporate
into a script or extension to show what ArcView is currently working on, how long it's been
working and how long it'll probably take to finish. It's especially well adapted for scripts that
have lengthy "for each™ loops that take hours, days or weeks to finish. This is basically the same
dialog as you’ll find at http://www.jennessent.com/arcview/progress_meter.htm.

-
&} Curmrent Status.__.

Began Job: Februare 27, 10:21:34 Abd 10:27:43 |

Ywhorking on Step 1835 of 2000...
Counting ta 2,000

E ztimated time remaining; 0:00:01

IENNENENEENNEEENEENNEEEEREEE] | (91.8%)

Click this button and you’ll be prompted for the name of the Progress Meter Dialog Editor
document:

i} Enter Mame for Progress Meter Dialog:

Enter Mame for Dialog: | Jennessent. 5 ampleProgresseter

Thiz function will generate a progress meter that updates the uzer =]
an the current action being taken, the current time, the beginning
time, the percentage completed, and an estimate of the time
remaining before completion.

Enter a name far thiz dialog. The zample code will be it a soript
named "[vour_dialog_name]_zample code",

Cancel 0k,

Click “OK” and the tool will produce a progress meter dialog and 3 scripts:

http://www.jennessent.com/arcview/progress_meter.htm

! Jenneszzent SampleProgre ssM eter

10:17:38 10:17:33

rescord Fmber

index

estimated time left

NERRRRRNRRRNNNRANNNNARNNNNNNNN| (0%

e :
&2 New Documents:

The following docurments have been added to your project;

| v

DIALOGS:
Jerneszent.S ampleProgresshdeter

SCRIPTS:
Jerneszent. 5 ampheProgresshdeter_Open
Jennezsent. 5 ampleProgresshdeter_E st Timeleft
Jennessent. 3 ampleProgressheter_SampleCode

The “Open” script centers the dialog on the page and clears out any existing text from the
labels. The “EstTimeLeft” script is the script you call to update the progress meter. You
essentially send it data regarding what step you are on and how many steps the process is going
to take, and the “EstTimeLeft” script estimates the time remaining and updates the progress
meter.

The “Sample Code” script illustrates how to use the progress meter. You can run the sample
code script to see the progress meter run through two functions; first by counting to 2,000 and
updating itself at every increment, and then by counting to 40,000 and updating itself every
second. See “Progress Meter Scripts” in the appendix for examples of the scripts.

Select Theme and ID Field Dialog...: This is a simple dialog that opens with two listboxes,
a Cancel button and an OK button. The dialog is intended to query the user for a particular
theme and a particular field from the theme attribute table (often an ID field). The first listbox is
preset to list the themes in a view and the second listbox is set up to list the fields of the selected
theme. Optionally, you can preset the first listbox to show all the tables in the document.

i Pleagze zelect Theme and ID Field:

- Select Theme - - Select D Field -

Area j

State_fips

Sub_reqgion

State_abbr

Pop13a0

D100 .d

Cancel ak |

[+]

Click this button and you’ll be prompted for several parameters:

£ Enter Name for Theme/ID Field Dialog: x|

Mame for Dialog Editor: I SampleDialog. ThemelD

Enter Dialog Title: I Select Theme and 1D Field:

Fill Theme Liztbos with the following:

v Al Feature Th Integer Grid T hemes
bl * [Fequirez Spatial Analyst]
i~ Paoint Themes

r~\Poliie Themes " All Grid/Feature Themes

" Polpgon Themes " Tables [No Themes)
Fill Figldz Liztbos with the follawing:

Al Fields " Only Sking Fields

¥ Al Mon-Shape Fields " Orly Mumber Fields

¥ Include "<-- Mo 1D Field =" option

Thiz function will generate a bazic dialog to query the «
uzer to zpecify a theme and D figld. Use the options
above to cugtomize this dialog for specific types of

themes and specific claszes of field. CALTION: IF you Cancel
chiooze the 'Grid' or ‘Al optiong, vour project will need —_—
to have Spatial Analyst loaded becauze it will create kK
zome Grid-bazed code.

Er_1ter a hame gnd fitle For thiz dial_u:ug. The zample code ;]

The “Name for Dialog Editor” will be the name of the Dialog Editor document. The “Title”
is the text that will appear in the blue bar at the top of the dialog. For some reason this title does
not always show up in the Dialog Editor window, but the title appears correctly when the dialog
itself is opened.

You can preset the dialog to show only a subset of the themes in the Themes listbox, and you
can also restrict the fields to specific field types. If you want to change any of these after you
have created the Dialog Editor, you can easily make the modifications in the scripts. These
presets just save time up front if you know exactly what type of themes and fields you want to
query for.

10

Click “OK” and the tool will generate the dialog and 7 scripts:

&2 Jenneszenl. 5 ampleThemd DField

-5Select Theme - -Select IO Field -

- a

2 New Documents:

Thie Tullowirng Jocumenls have been added Lo vounr poje., =

DIALOGS.
.ennezzent S ampleT hemelDField

N
[

Cancel (]9

SCAIPTS:
cerreszeril SanpleThenelDFigld_ O pen
.enneszent S ampleT hemelDFigld_SelectTheme
vernzsenl S ampleThenelDFigh)_CheskOF
cenneszent SampleT hemelDField_Canzel
cennessenl SanpleThenelDFieh]_OF
.enneszent S ampleT hemelDField_Close
«ennezzent 5 ampleT hemelDField_zamle code —

All the scripts except the “Sample Code” script pertain to the dialog itself and control what
happens when you select a theme or field, or click on the OK or Cancel buttons. The “Sample
Code” script illustrates how to use the dialog. For examples of these scripts, see “Theme and ID

Field Scripts” in the appendix.

Report Dialog with Clipboard Options...: This produces a dialog composed primarily of a
text box, with optional buttons to copy the text to the clipboard. The advantage of this dialog
over the basic “msgBox.Report” is that this can be either modal or non-modal, so you can keep it
open and updating as the user works:

Click the button and you’ll be prompted for a Dialog Editor name, a Dialog title, and which
options you prefer:

i Report Dialog Paramekters: E[

Dialog Editar Mame: IJennessent.HepDrtDialng

Dialog Title: I Repart;

O ptiame:
¥ lnclude a 'Copy to Clipboard' buttan
¥ Include a 'Copy to Clipboard and Cloze' button
[T Make Modal
¥ Make Besizable

Cancel 0F,

After you click “OK?”, the extension will produce a dialog editor and several scripts for you.
For examples of these scripts, see “Report Dialog Scripts” in the appendix.

11

=

% AWRDReportDialog

x
- - Statistics Repork:
The following docament: have been added to vour project: -
DIALCGS: =

AWEN Raparthialng

SCRIPTS:
AwRD . Rzporthialog_Open
AwHD RzpartDialog_Close
AwHD RzportDialog 0K
AWwRD Raporthialog_Run
AwRD Raporthialog_Sample_Code
AwRD RzpartDialog Copy
AWHRD Fzportlialog CopyClose =

-

Capy ta Clipboard Copy and Close | Cloze |

Copy ta Clipbaard | Copy and Casc | Cloze |

Review the “Sample_Code” script for an easy way to operate the report dialog. Basically
you can run the “Run” script with two parameters and the “Run” script will open the dialog for
you. For example, if you wanted to make a report stating the current date and then let the user
close the dialog, you would do it as follows

theDialog = av.FindDialog(“[the name you specified”]
MakeReport = av.FindScript(“[the dialog name you specified]_Run’)

theTitle = “Report:”
theText = (Date.Now.SetFormat(“dddd, MMMM d, yyyy; h:im:s AMPM).AsString)
MakeReport.Dolt({theText, theTitle})

Wednesday, Map 14, 2003; 5:23:18 PM

| »

Copy to Clipboard Copy and Cloze Cloze

The dialog can be closed either by clicking the “Close” button or, if it is a non-modal dialog,
by the “Close” request. Other potential uses of this dialog might be to generate a running report
of feature attributes that a user might click on.

List Dialog with Message, Listbox options...: This provides an alternative to the standard
“Msgbox.List” option, with the advantage that your listbox can have multiple rows and columns
and that the list can contain more than just strings and numbers.

Click the button and you’ll be prompted to give a name for the Dialog Editor document and a
title for the dialog, plus several parameters:

12

i} Set Parameters for List Dialog i ﬂ

Dialog Editor Mame: | zzz_lennessent. S amplelistB o

Title Bar; | Pleaze select fram the following items;

kake Basic Scripts for Following E vents;
v Open Dialog [+ Click Cancel Buttan

[+ Close Dialog [+ Click OK Buttan
[T Achvate Dialog

v Madal
¥ Resizable

Liztbow Scroll B ars:
[~ Harizontal Scrall Bar

Allowe uzers ta select fram list accarding ta: | pultiple Fows -]

Catizel |] |

Click “OK” and you’ll get a new dialog editor plus a report on the new scripts that were
created:

) zzz_lennessent.SampleListBox o =] B3

Please select from the following items:

FY

-

e

L+

Cancel ak

#} Mew Documents: x|

The following documents have been added ta pour project:

DIALOGS:
zzz_Jenneszent. S ampleListB ox

SCRIPTS:
zzz_Jlennessent. S ampleLiztB ox0pen
zzz_Jenneszent. S ampleListB oxCloze
zzz_Jlennessent. S ampleliztBox0k
zzz_Jenneszent. S ampleListB oxCancel
zzz_Jlennessent. SampleLiztB oy Fun
zzz_Jenneszent. S ampleListBox_sample_code

RN

13

If you open and run the script “[your dialog name]_sample_code”, you will get an illustration
of how the dialog works. Notice that we were able to add symbols and icons to the listbox.,
which is not possible with the standard “msgBox.List” function offered with Avenue.

Thiz iz a zample mezsage to ilustrate how to uge thiz dialog. You

rmight want to explain how to zelect multiple cellz, rows or
columnz in the hiztbox below i vou have set up pour list that way.

! Please select from the following it

i i d 10
N d I 5
14 15 —= .
CEaneel | ok

Once you’ve made the basic list dialog, you will likely want to customize it further with
scripts describing what happens when certain cells get clicked on, or possibly customizing the
cell height and/or width. For examples of the scripts that get generated automatically, see “List
Dialog Scripts” in the appendix.

Build List Dialog, Sortable with Add/Remove: This generates a dialog where a user can
select items from a list, and sort their selection. It returns a list of the selected objects. If you
open and run the script “[your dialog name]_sample_code”, you will get an illustration of how
the dialog works.

! select and Sort:

- fvrailable - - Selected -

200

x|

300 J 3
400 KO0 —
4

1]

E00 Remove |

£00
700 | |

Cancel | QK

For examples of scripts that get generated automatically, see “Sortable List Scripts” in the
appendix.

Select Desired Projection Dialog: This is intended for calculations in which the projection
will affect the output, and in which it is unclear what projection the user wants to use for
calculations.

14

#2 Desired Projection for Calculation El

'our oniginal data are unprojected, but pour Yiew hasz been
projected into the Albers Equal-trea Conic projection.

Do you wigh to calculate vour RESULTS data bazed on thiz
projection? | pour themes are both Point themesz, you mayp
calculate Great Circle distances [most accurate).

RESULTS Drata Projection:
¥ Albers Equal-trea Conic Projection
" Geographic Projection [Lat/Long)

= Use Great Circle Distances [point thermes only)

Cancel |

For examples of scripts that get generated automatically, see “Select Projection Scripts” in
the appendix.

Select Folder Dialog: This opens up a simple dialog that allows you to select a folder, not a
particular file. It is a little more intuitive that forcing the user to use the FileDialog to select a
file in a folder, then extracting the directory of that file when you only need a folder.

#! Find Data Directory: |
Fleaze find and open wour directony and chick ;‘
‘0K _|

Drives: | =]

= = A
[= Esn
[= Av_gis30
£ Arcview
£ dydocs
1 Awitibar
Cancel |]S | o
it

Select Color Dialog: This is a more advanced version of the standard ArcView color dialog.
It has the advantage of letting you easily generate your own color within the primary dialog. It
also lets you specify colors using either Red/Green/Blue (RGB) or Hue/Saturation/Value (HSV).
This dialog includes a “Sample Code” script to illustrate its use.

15

i select Color: 1 x|

T

IL j

HEN

EEE Current Colar
£z |
[11
Ellili Ok
Iilili Cancel
.

) 20

i

(]

i —
) 200

HSW:

Hue

S aturahion J 100

Yalue J 3

b Y
(]
=
=

(iu)

£

[=
The button gives you information on the current dialog components. When you click it,

it returns 5 lists of all the dialog components:

1)
2)

3)

4)

5)

The first list simply names all the components.

The second list formats the names as “xxx = theDialog.FindByName(‘xxx’)”” and is intended
to be copied and pasted into the headers of dialog scripts. This saves a lot of time when you
want your dialog scripts to check/alter other dialog components.

The third list formats the names as “self.GetDialog.FindByName(*xxx”).SetObjectTag(nil)”
and is intended to be pasted into the “Close” script. Use this only if you want to clear your

dialog object tags upon closing in order to free up memory. There are times you want your
dialogs to save the object tags so you won’t use this all the time.

The forth list shows the exact position on the dialog of all the components. This is very
useful if you want some dialog components to move when you click a button. Simply
arrange the components in the locations you want, click the button and record the
coordinates, then use those coordinates in your “MoveTo” requests.

The fifth list shows the exact position of the Dialog Editor graphic controls. This is useful if
you want to generate dialog editors and correctly position the graphic controls.

The final report for our earlier sample dialog looks like this:

16

oA
R

cmdCancel
cmddk,

|

thellialog = av.FindDialog*'lenneszent. S amplelialog™)
cmdCancel = thelialog.FindByHamel'crmdCancel)
cmddk. = thelialog. FindBuM amel'crmd0 k"]

Self. SetObjectT aglnil]
Self FindBuM amel 'crdCancel”]. S et0bjectT aglnil]
Self FindByM amel 'crmd0E"). 5 et0bject T aglnil]

Dialog Screen Pogition: &= = 58,.% = 30

Dialog Screen Size: 351 pikelz wide by 218 pixels high

Dialag Inner Extent: 345 pisel: wide by 192 pivelz high

cmdCancel: Origin = [38. 31], Width = 96 pixelz, Height = 24 pixels
cmdOFE: Ongin =33, 43], “Width = 96 pikelz, Height = 24 pixels

Dvialog Editor Data:

DEd "Windowe Pogition: » = 368, % = 259

DEd'Window Size: 493 pivels wide by 267 pixelz high

Diialog Frame Location: 0.604167 in. from the left and 0.197317 in. up from the bottom
Dialag Frame Extent: 3.59375 in. wide by 2 in. high

cmdCancel: Ongin=[1, 1], Width =1 in., Height = 0.25 in.

cmdOE: Ongin=[1,1.5], Width = 1 in., Height = 0.25 in.

Simply copy the portions you want and then paste them into your scripts.

The button gives you an easy way to adjust the tab order of the controls in your dialog.
Click it and it’ll show you a list of all the controls currently there, in their default tab order:

7 Shuffle Dialog Components. x|
Change Tab Order of components by selecting that
component and then clicking the Up ar Daown arronws,
Double-click component to type order number directly. .

364] ttR_FradFreqa ==
36A] ttOR_JSPwSLeg3 ;
J6E] tatOR_USPwSHumber3 1
367 twt0R_CaolarLeqg3 ==
368] tDR_ColoMaind 1
369] tetOR_ColorT ab3 T
370] chkOR_ColorCohort3 =]
A7) tOR_UTMES _|
A72] tatOR_TMM3
374] cmd0R_ViewLoc3 =l
Cancel | Save |

17

Select the control you would like to move in the tab order and then use the up and down
arrows to shift it. Alternatively, you can double-click on the control name and be prompted to
type in the correct order number:

x|
Fleaze enter the order number to shift 't«t0R_Mouse3' to: 0K,
| 373 Cancel

IMPORTANT: This function does not override any custom “Next Control” settings you may
have made:

< Properties - Jennessent.Sam) x|

| tutTest [TestLing] =]

Mame: | txtTest

Apply -
Changed

Click,

Dizabled Falze

Emphy

FocusLost

Help

HiddenT ext Falze

| rvizible Falze

Label alentlined:

LabelSize 1]

M extCantrol

FAeadlnly Falze o
Size 1]

Tag LI

[Fresz F1 for Help.]

This tool actually just rearranges the order of GraphicControl objects in the dialog editor’s
GraphicsList and then recompiles the dialog, which in turn affects the tab order. Therefore any
“NextControl” designations you may have set will still be in effect. This tool has the advantage
of letting you set the tab order of buttons, though, which you cannot do with the “NextControl”

property.

The button is a kind of cleaning tool for all your dialogs (it’s supposed to look like soap
bubbles). If you click it, it’ll go through all your dialogs and set all possible object tags to “nil”
and set the servers to “nil”.

The button saves things into an object database. See the description in “Project Buttons”
regarding saving components into an object database.

18

The button extracts all the scripts, dialogs, buttons, tools and menu items from the object
database and installs them into your current project. It won’t install a component that already
exists, so you shouldn’t get multiple copies of the same script or button.

The button is a global search tool. It searches through all your scripts for your search
term and gives you a report of where they occur. See the discussion of Global Searching in the
section on Script Buttons.

The ﬂ button adds corner bars to the lower right corner of your dialog and sets the dialog
to be resizable. These corner bars are a common way to indicate that a dialog may be resized by
dragging on a corner. This function also sets the corner bar icon fasteners such that it will
maintain a constant width and height, and will maintain a constant distance from the right and
bottom edges of the dialog.

#! Dialogl @ Dialogl

The button attempts to export the Dialog Editor dialog into a VB6 form. It positions and
indexes controls correctly, and includes notes in the “Private Sub Form_Load()” subroutine
discussing additional changes you need to do (such as identifying images to attach to buttons or
image boxes).

If the ArcView dialog is resizable, then this function will also insert code to attach Resize
anchors to each control.

19

ArcView 3.x Dialog Editor Document

@ _saguaro.ThemelDDialog o)
-]
Calculate Stafstics For =
' the selected features of 4l features of =10l
Themes Fields D. i, Calculate Statistics .
= = -~ Caloulate Statistics For
” the selected features of = ll features of
 Trene s B
- [IbATheme - [IbwFieid
lgnore Yalues - -
e A -
[Separate multipls values by cammas)
DUTRUT OPTIONS: Basic Advancad e e e
bt il = | Sl ot I' :Ig:n:m:e: - [t:::r:lj;ultiple walues by commas]
* OUTPUT OPTIONS: " Basic 7 Advanced Lo
1 it i Deceia Fsces [Nurroer o 0 =] NGRS} IFO
o : e
Visual Basic 6 Form
Dialog Menu Items:
Dialog Toolz Cantral Toals
Dialog Report - This Dialog Shift cantral Lp 1 pixel F11
Dialog Report - All Dialogs Shift contral Bight 1 pixel F12
Identity Seripts - This Dialog Shift control Down 1 pixel F3
Identify Scripts - &1 Dialogs Shift contral Left 1 pixel Fa
Search Dialogs for Script... Stretch Up 1 pixel Chl+F11
Search Scriptz for Dialog. .. Stretch Right 1 pixel Cil+F12
Script B ecursion - &ll Scripts Stretch Down 1 pixel Ctil+F3
todified Save Dialog Function Stretoh Left 1 piel Lrl+F3
Compile Al Dialogs Shiink Up 1 pixel Shift+F11
Clean &ll Dialogz Shrink Right 1 pixel Shift+F12
Lizt Dialog Components Shirink Dowen 1 pisel Shift+F3
Make New Dialog Shrink, Left 1 pixel Shift+F3
Save Scriptz, Dialogs, etc. to ODB Center in Dialog Harizontally Crrl+E
Eutract Scripts, Dialogs, ete. fram ODE file Center in Dialog Wertically Ctrl+F
Build "Make Dialog" cript fram current dialog... Distribute Horizantally, Fit to Left
Generate Resize Text for WB Form... Diztribute Wertizally, Fit to Top
Generate Resize Clazz Modules... Open kodified Distribute Dialog... FF

Backup Project File Ctrl+B

20

o Dialog Report - This Dialog: This function produces a report describing the dialog, all

it’s parameters and referenced scripts, and all the parameters and referenced scripts of all

the controls on the dialog.

'"OwiProject DRGSetCalorDialog’ Dialog Attributes and Scripks: - Marme: crdCancel ﬂ
B RN Label: Cancel
-ATTRIBUTES - Click: OwilProject. DRGSetColorDialogCancel
‘Activate' Script: Help:
TClose' Script: QwlProject. DRGS etColarDialogCloze Help Topic:
'Doc dctivate' Script; Tag:
Dpen' Script; JwliProject. DRGS etColorDialogOpen |z Wigible: TRUE
"Server Activated' Scriph: |z Enabled: TRUE
"Server Closed' Script: Update:
Server Deactivated' Script: Fasteners:
"Server Definition Changed' Script; Fired 'width
"Server Dpenad Script: Fixed Distance from Top
"‘Server Records Added' Script: Fixed Height
"Server Records Deleted' Scoript: Fired Distance from Left
"Server Selection Changed' Script; Ligteners. - none -
'Update’ Script: Referenced Scripts:
Default Buttan: OwlProject. DRGSetColarDialogCancel
Help Topic:
Haz Title Bar: true 18] CONTROL: crndQF, [LabelButton]
Iz Alwayz on Top: true Marme: crnd0K
Iz Clozable: true Label: Ok
Can Use Ezcape key: tue Click: OwilProject. DRGSetColorDialogdk,
Modal; false Help:
|z Resizable: falze Help Topic:
17 Cantrals Tag:
Iz Wisible: TRUE
- "OwlProject DRGSetColorDialog’ Control: and Parameterg --------- ls Enabled: TRUE
1JCOMTROL: chkBlack [CheckBaox) Update:
Mame: chiBlack Fazterers:
Label: Black [roads, boundaries, text) Fired 'width
Click: Fixed Distance from Top
Help: Fixed Height
Help Topic: Fixed Distance from Left
Tag: e
|2 Vizible: TRUJE Referenced Scripts:
|2 Enabled: TRUE OwiProject. DRGS etColarDialagOk.
Update: -+ OwilProject. DigSetColorspply
Fasteners =r DwlProject DRGIdentifyDRGThemes
Fined "Width -» OwiProject DRGS etColorExecute
Fixed Distance from Top -» OwlProject. DRGMakelriginalCalorkd apDictionary
Fixed Height
Fixed Diztance from Left T TITO] ~
Listeners: - none - Mame: crndReset
Referenced Scripts: - none - Label: Reset
Click: OwlProject DRGSetCaolorR ezet
21 COMTROL: chkBlug [CheckBaox] ﬂ Help: j

Notice that the list of referenced scripts also shows the additional scripts that each script

references.

Dialog Report - All Dialogs: This function does the same thing that “Dialog Report -

This Dialog” does, except that it produces a single report describing all dialogs in the

project.

identifies the ones that refer to this dialog:

21

Identify Scripts - This Dialog: This function searches all the scripts in the project and

Scripts that refer to 'OwlProject DRGSetCalorDialog's _:l

Dialog = OwlProject. DRGSetColorDialog, Referenced by
OvalProject DRGS etColardpply
DwiProject. DRGSetCaolorDialogCancel
QwiProject DRGSetCaolorDialogClose
OvalProject DRGSetColorDialogOk,
OwiProject. DRGSetColorDialogdpen
DvalFroject. DRGSetColorR ezet
OwiProject SetDRGCalars EI

o Identify Scripts - All Dialogs: This function searches through all the scripts in the project
and identifies which dialog each script refers to:

Scripts that refer to Dialogs, Sarted by Script: j

Script; OwlProject. CheckE v ars
- nane -

Script; OwlProject. D efaulthd odifpéddFromFile
DwlProject. Defaultt odifpDialog

Script; OwiProject. D efaultkd odifyCheckOFE,
OvalProject. Defaultt odifpDialog

Script; OwlProject. D efaulthd odifyDelete
DvalProject. DefaulttodifpDialog

Script; OwlProject. D efaulttodifyDialogC ancel
DwiPraject DefaulttodifuDialog j

o Search Dialogs for Script...: Searches all the standard dialog event scripts for a script
name, including all referenced scripts. Also searches all dialog control scripts and all of
their referenced scripts.

22

i search Dialogs for Script References: ﬂ

|mput Script Mane:; (]

| zaguare.ModSummarizeliglogCheckEnable Eancel

#d Script Referenced by Dialogs Report: x|

‘saguaro.todSummarizeDialogCheckE nable' is referenced b the Following dialogs: &

DIALOG: saguaro.M od3ummarizeDialog

-+ PEM SCRIPT: Indirect R eference from "saguaro. b odSummarizel ialogOpen'
-5 gaguara.MadS urmmarizellialoaCheckErnable

-+ Contral 'lbxSummaryFields' references sonipt directy..

- Contral k=T hemes' references scnpt indirecty.. .
-+ gaglaro b odS urmmarnizelialogCheckEnable

L]

Copy to Clipboard Copy and Cloze

o Search Dialogs for Script: Basically does a “Search All Scripts for Text String”
function, automatically entering the current Dialog name into the input box:

it Search All Scripts:

[nput Mame of Dialog to Search For:

| Jerneszent S ampledddT olistDialog Cancel |

x

---------- DIALOG ' -
Jennezzent. SampledddT oliztDialog' by Scrpt:

Jennezzent ConvertDlialoglntaS cripk
[Line ¥] theloc = av.FindDoc("Jenneszent. S ampledddT oliztDialog'']

Jennezzent M akeS ampledddT alistDialog
[Lirie BO] theString = theString. Substitute]") enneszzent. S ampledddT oliztDialog”’, theDialogh ame)
[Line 100] theString = theString. Substitute("Jenneszent. S ampledddT olistDialog"”, thelialogM ame)
[Line 138] "thelialog = av FindDialog(*"Jerneszent. S ampledddT oliztDialog' ") "'+HL+
[Lire 167] the5tring = theString. Substitutelenneszent. S ampledddT alistDialog", thelialog ame]
[Line 182] “theDialog = av. FindDialog"ennezzent. 5 ampledddT olistDialog'™] +ML+
[Line 193] theSting = theString. Substitute]"Jenneszent, S ampledddT olistDialog"’, thelialogh ame] .L‘

Copy to Clipboard Copy and Cloze L c I-:usel Y
i

o0 Script Recursion - All Scripts: This function produces a report describing how the scripts
in the project call each other. If a script calls other scripts, those other scripts are shown
below the script name and indented 2 spaces:

23

Script Recursion:

Scriptz That Call Other Scripts:
OwlProject. CheckE nvars

- hohe -
OwiProject. D ef aultk odifwtddFramFile

- OwlProject. DefaulttodifyCheck 0K,
-3 DwlProject. DefaulbdodifyFillList

OwiProject. Defaultt adifyCheck 0K,
- nione -

#2 Script Recursion:

OwlProject DRGSetColorDialogClose

- None -

OwiProject. DRGSetCalorDialogOk,
-» OwlProject.DrgSetColordpply
> OwlProject. DR GldentifyDRGT hemes
=+ OwilProject. DR G5 etColorE secute
-+ DwiProject. DRGMakeOniginalColorkd apDictionary

OwlProject. DRGSetColarDialogOpen

- Anne -

S 2

Modified Save Dialog Function: This function is identical to the button described
above.

Compile All Dialogs: This function is identical to the button described above.
Clean All Dialogs: This function is identical to the button described above.

List Dialog Components: This function is identical to the button described above.
Make New Dialog: This function is identical to the button described above.

Save Scripts, Dialogs, etc. to ODB: This function is identical to the button described
above.

Extract Scripts, Dialogs, etc. from ODB file: This function is identical to the button
described above.

Build ““Make Dialog™ script from current dialog: Generates the code necessary to create
the current dialog on-the-fly.

Generate Resize Text for VB Form: This function takes an existing VB form, analyzes it
for resizable controls, and generates the appropriate code to insert into the “Form_Load”
sub procedure. See appendix for sample of actual code generated. The resizing depends
on 3 class modules, which can be autogenerated with the code below:

Generate Resize Class Modules: This function generates the 3 VB class modules
necessary to make the Resize functions work. The code is adapted from original code
written by “neophile (n_e o _p_h_i_| _e@yahoo.com)”. See appendix for actual code.

Backup Project File: This saves a copy of your current project file to a new name in the
same directory as your current project file. It appends the date and time to the new name.
For example if your project was named “this_project.apr” and you clicked the backup
function at 10:30:23 on June 20, 2003, this function would save a copy of the current
state of your project to “this_project 06202003 103023.apr”. This function does not
save the current state of your project to “this_project.apr” though! Use [Control]-S for
that. This function is repeated in the File menu of all the documents.

Control Tools: The first 14 options provide hot-keys to resize and move control graphics
on the Dialog Editor document. The “Shift Control” functions move the controls by 1

24

pixel rather than 2 pixels like the arrow keys do, making it much easier to manually align
controls. The resize functions also modify the controls by 1 pixel in width or height.

In general, [F8] moves the control left, [F9] moves it down, [F11] moves it up and [F12]
moves it right. The [Control] + [F-key] stretches the graphic control in the specified
direction, and the [Shift] + [F-key] shrinks the control.

[Control]-R will shift the selected control graphics to the vertical center of the dialog, and
[Control]-E will shift them to the horizontal center. The selected graphics will move as a
group such that their positions relative to each other will not change.

o Control Tools; Distribute Horizontally, Fit to Left: This is similar to the control
distribution function in the standard ArcView “Align” box, except that this function
forces the controls to have a constant spacing between each other. The standard “Align”
function will distribute the controls as evenly as it can, while locking the position of the
two controls on the ends. This function may shift the control on the right side in order to
maintain the constant separation distance.

o Control Tools; Distribute Horizontally, Fit to Top: This is similar to the control
distribution function in the standard ArcView “Align” box, except that this function
forces the controls to have a constant spacing between each other. The standard “Align”
function will distribute the controls as evenly as it can, while locking the position of the
two controls on the top and bottom. This function may shift the control on the bottom in
order to maintain the constant separation distance.

o Control Tools; Open Modified Distribute Dialog: This gives you more control over how
distributed controls are separated. The two options above describe 2 of the functions
available on this modified Distribution dialog.

Distribute Conkre x|
Horizontal: Yertical
FittoLeft ||| FittoTap |
Fitto Fight ||| Fitto Battom |
Fitto Both ||| £ Fiio B

Cloze |

Script Buttons: 5] E:3 1=) o s |1 |

This extension also adds 10 buttons to the Script button bar:

The button inserts several lines of code into your script. This is intended for scripts
called from Views and collects a set of commonly-used variables. 1 just got tired of typing this
out every time so | made a tool to automate it.

theView = av.GetActiveDoc
theDisplay = theView.GetDisplay
theThemes = theView.GetThemes
theGraphics = theView.GetGraphics
theProject = av.GetProject

thePrj = theView.GetProjection

25

theWorkDir = av.GetProject.GetWorkDir
theWorkDirStr = theWorkDir.AsString
theOS = System.Get0S

theFThemes = {}
for each aTheme in theThemes
if (aTheme.ls(FTheme)) then
theClassName = aTheme.GetFTab.GetShapeClass.GetClassName
if (theClassName = "Polygon') then theFThemes.Add(aTheme) end
end
end

The E button takes you to a specified location in the script. For example, if you get an
error message looking something like:

2 Error in DwlProject.ZoomAndMakel ayou x|

@ A[n) Sting object does not recognize request UnSelectdll

Help |

then you know that the script crashed at character location 12,443,or 12,443 characters into the
script. By the way, this kind of error message usually happens when somebody else is using
your compiled extension; when you cause the crash yourself in the project where you’re writing
the code, ArcView just takes you directly to the location that triggered the crash (with a few
exceptions; see “Insert Error Checking Code” on p. 32 for help in tracking down such hard-to-
locate crashes as the “AVArray:” bug). You would use this tool to identify the script location
indicated by the error message. When you click the tool, you’ll be prompted to enter the
location. The tool then will position your cursor at that location.

i Enter Location Number: EI
Please enter character lozation to go to in current script; k.
| 12443 Cance

The button makes new dialogs. See the description above regarding making new
dialogs.

The button compiles all scripts, and gives you a report listing all scripts that couldn’t be
compiled.

C :
The button closes all open scripts.

The @ button shrinks the current script to the minimum “open” height, allowing you to
minimize the script while still keeping it large enough to read the name:

26

SampleScnpt.ApplyR ainbowColorBamp !EI

wanpleScript ApplyRainbowColorRanp

theVikw = av Getictiveloc
theThemgs = theView . GetThemes

' IDENTIFY GTHENgE TO USE
theiGThense = msgBD Li=t{theGThenes, "Please =slect the grid them

i

1f (theGThemne = nil %then return nil end

IDEHTIFY HOW MANY STERS TO USE
while (True) —

theHumnber = m=gBox . Input%'FPlea=e input the number of gradation
if (theHumber = nil) then %geturn nil end
if (theHumber I=zHumber) the

theHumber = theNumber A=zNumger Round

breal
elze '
EngsgBDx.Harnlng{ Warning: You m i SampleScript ApplyR ainbowColorR amp

end

' SampleScript . ApplvEainbowColorEanp
1 |

thelegendInterval = (1024 ~ {theHum!
thelegend = theGThens. Getlegen

' SET LEGEND COLOES
t h=FH =1 ANz

The @ button shrinks all open scripts in the project.

The button saves things into an object database. See the description in “Project Buttons”
regarding saving components into an object database.

The button extracts all the scripts, dialogs, buttons, tools and menu items from the object
database and installs them into your current project. It won’t install a component that already
exists, so you shouldn’t get multiple copies of the same script or button.

The button is a global search tool. It searches through all your scripts for your search
term and gives you a report of where they occur. Click the button and you’ll see the following:

i Search All Scripts:

Input zearch string: k.

| SetObjectTag Carcel

Doing a quick search for the term “SetObjectTag” gives me the following:

27

Set0bjectT ag by Script:

Fal_wWhD.AqSpTooldpply
[Lire 171] cmdListall. S etObject T agl{ShortCodelizt, ShartCommonList, ShortS cientificList})

Fal_whD AgSpviewerClear
[Line 48] IbxS electlizt SetObject T aal{nil, nil, nil, nl})

Fa0_wWhRD.AGS pYiewerCloze
[Line 18] imgFAQ . Set0bject T aglnil]
[Line 17] Ib=Digtributions. 5 et0 bject T aglnil]
[Line 18] IbxS electLizt. SetObjectT aglnil]
[Line 19] crndLiztél. S etObject T aglnil]
[Line 20] crmdB ackground. S et0bject T aginil]

Fal_whRD.AgSpviewerFullSize
[Line 19] cmdB ackground. S et0bject T ag(thel magetsindow]

Fal_wWhD.AgSpviewerEeneratel ata
[Lire 0] imgFa40. Set0bjectT ag({theSpeciesCodelist, theS peciesCommonList, theS peciesS cientificList,
theCodeDictionary, theCommonDictionany,

FAO_WRD AGSpWiewerOpen
[Line 33] IbxSelectList. S etObject T ag({nil, nil. nil, nil}]
[Line 34] cradListtl.S etQbject T aglini, nil, nil})
[Line 35] InxDiztributionz. S et0 bject T aglnil]

FA0_WRD AGQSpYiewerSelSpecies

[Line 45] IbxSelectlist. S etObjectT ag[{cpSelectS pecies. GetSelected. G eth ame, theS peciesS cientific,
theSpeciesCode, thes peciesCarnmaon})

[Line 103] IbDistributionz. S et0bject T agltheB azinzDictionary]

Fa0_wWHRD. ChangeD atatdd
[Line 21] IBIT ermpDictionamyHalder. Set0bject T agithe T empDictionary]

FAO_WRD.Changel ataCancel
[Line 51 16T emoDictionarHolder. Set0 biect T aalnill =

You can also do Pattern-style search by using the “*” and “&” wildcard characters. “*” stands
for any string of indeterminate length while “&” stands for any character.

28

Script Menu Items:

nido

-

Replace. ..

Script Tools

Inzert Calculations' header
Inzert Standard Script Header
Ingert code for new FT ab/AdT ab

Inzert code to show Object az Test...

Search and Beport Tools

Search Selected Scripts..
Search All Scripts. ..

Search Dialogs for Script. .
Search DocGUlz for Script...

= Cilose Inzert 'Time Elapzed’ code Go ta line number in current script... Chrl+N
Lo LTS .
Copy Etl+E Insert Error Checking Code Script Repart with Line Murnbers
i Replace TAB characters with Spaces. . : : i .
Paste Chley Script Recursion/Report - Thiz Script
[Huate Current Script Script Recursion - All Scripts
Select all Chrl+dy y : o
Dot Loit Chlsll take Fandom Mumber script... Script Statistics
elete Le il+ | ;
Inzert code to show Object as Text... Script Code Repart
Camment Crl+Q

Bemove Comment Chil+af

Shift Right Chrl+R
Shift Left Chrl+L
Add Parenthezes Chi+E

take Mormal Fandom Mumber Script...
tdake Inzert Commas in Number' script..

Gernerate Sting of Random Characters..

take Measurement Unit Dictionaries. ..

Generate Geometric Function Scoripts...

Compile &l Scripts

Cloze All Scripts
Shrink all open soripts
Shirink this script
elp
= take Mew Dialog...
Help Topics...

Edit Menu:

l’l ol [et 8 0 [
Define Term; F2 '
O ST e =

Save Scriptz, Dialogs, etc. to ODB...

Extract Scriptz, Dialogs, etc. from ODB file...

Huote Text for VBE Code
Generate Resize Text for YE Fom...
Generate Resize Claz: Modules.

Check. this project far Errors
Generate Script to Check Scripts. ..

Search Scriptz for 0dd Characters

Statistics on Yisual Basic & Project...
Copy WBE Project Files. ..

Combine WE Project Files into Document

o Find: | added a shortcut key to this option so you can simply click [Control]-F to find

text in this script. An easier way to use it is to block the text to look for first. If any text
is selected, then the function searches for instances of that selected text string.

o0 Select All: | added a shortcut key to this option so you can select all the text in the script
by clicking [Control]-A.

o Comment: | changed the “Comment” script so that it would behave differently.
Previously, if you blocked out a section of text but started the block in the middle of the
line, the “Comment” function would insert the comment symbol in the middle of the line.
I modified it to put the comment symbol at the beginning of the line no matter where you
start the comment block. 1 also modified the update script so that it would always be
enabled. The update doesn’t get fired off when you make a selection so often the
comment function will be disabled when you want to use it.

I also added a shortcut key so you could trigger the comment function by clicking
[Control]-Q.

29

#! sample Script to illustrate "Comment” function: [E=] E3 I #1 sample script to illustrate "Comment" function: [H[=] E3 |

theView = awv. Gethctiwveloc - theView = av. GethctiwvelDoc -
theli=zplay = theView GetDisplay I thelisplay = theView . GetDisplay —
theThenss = theView. GetThenss theThemes = theView GetThemss

theGraphics = theView. GetGraphics EltheView GetGraphics
theProject = av.GetProject

thePrj = theView.GetProjection
thelWorkDir = av.GetProject GetWorkDir
thelWorkDirStr = theWorkDir. AsString
thelS = System. GetlsS

Original Script | Block out text to comment _|
J D[J [»f

#! sample Script to illustrate “@emment” function: [_ O] x|

&l sample Script to illustrate “Comment” function: !E[<

theView = av. GetictiwveDoc - theView = av. Getictive@oc -
thelizplay = theView GetDisplay I helDisplay = theView GetDi=play —
theThenes = #f iew . GetThemnes tigThenes = theView . GetThemes
theGraphics heView . GetGraphics ("tYeGraphics 4 theView. GetGraphics
'theFroject & GetProject wheFroject = awv. GetProject
'thePrj = theView. GetProjection "thePrj = theView.GetProjection
'theWorkDir = av.GetProject . GetWorkDir 'theWorkDir = awv.GetProject . GetWorkDir
"theWorkDirStr = theWorkDir. AsString 'thellorkDirStr = theWorkDir. AsString
"thel(S = Systen.Get0Z 'the05 = System. Get(0S

Original Comment Function _ Modified Comment Function _
1 [+ 1 [+

0 Remove Comment: As with the comment function, | modified the update script so this
function would always be enabled. | also added a shortcut key so you could trigger the
remove comment function by clicking [Control]-W.

o Shift Right: This does exactly the same thing that the button does. The advantage to
making it a menu item is that we can assign keyboard shortcuts to it. Now you can shift
the text to the right by using [Control]-R.

o Shift Left: This does exactly the same thing that the button does. The advantage to
making it a menu item is that we can assign keyboard shortcuts to it. Now you can shift
the text to the right by using [Control]-L.

0 Add Parentheses: This adds open- and close- parentheses around the selected text.
Help Menu:

o Define Term: This does the same thing as the button, but a little more conveniently
with a keyboard shortcut. Select the term you are interested in and click the F2 button to
open up the help files for that term.

Script Tools Menu:

o Insert “‘Calculations’ header: This just inserts a clear commented out message indicating
that the calculation portion of the script is about to begin. This type of break helps when
you have a long script that takes a lot of code to gather the parameters for the calculation.

/1111717177 | '/ L1LATTATTATLTATATTLTATLTLTLTLTLTL LT LT LT
R | CALCULATIONS | —mm oo oo
"\ | | J777777770777777777777777777777777777777777717777777777177/7/71/7/77/7/

30

o Insert Standard Script Header: This does the exact function as the button described
above.

o0 Insert code for new FTab/VTab: This function generates the necessary code to query the
user for the name of a new shapefile or dbf table. It customizes the code to generate the
precise shape class you’re interested in based on the feature type you select:

i! Select Feature Type: i EI

Fleaze zelect the tupe of feature pou would like o
query for;

corc |

Paint
kA LAIF cink

Falyline

Palygon —
Paints
kA LAF dinks

Btz hd

It then asks you to enter in a default name, which will be suggested to the user when the
FileDialog opens for them:

i} Default Name: x|

Fleaze enter a default name to put into the query bos: QF.

| random_points. shp Cancel

It then generates the proper code to do the following (see Appendix for sample code):

1) Search the current working directory for an existing file by that name, and add a
number to the end of it if such a file exists. This is exactly the same function as the
“Filename.MakeTmp” request except that “MakeTmp” only allows you a maximum
of 6 characters for the filename. This new version will replace “random_points.shp”
with “random_points1l.shp” or “random_points2.shp” if the file already exists.

2) It opens a filedialog prompting the user to either accept the suggested default name or
enter a name of their own.

3) It generates the code that will create the new VTab or FTab, identifies the Shape field
if it’s an FTab, adds a numeric ID field named “ID”, and adds code to calculate
record numbers in the ID Field and stop editing.

0 Insert Code to Show Object as Text...: This function adds a code snippet that will take an
object and store it in an Object Database, then read that ODB in a report window and
delete the ODB. This enables you to see an object as ArcView does, which can be useful
sometimes if you need to create one from scratch or to look for problems with an object.

31

(0]

Insert ‘“Time Elapsed’ code: This adds a code snippet that produces a short report string
describing the amount of time elapsed. Formats beginning and ending times and parses
out time elapsed as “X hours, X minutes, X seconds...”. The exact code that is inserted
is as follows:

® ASSUMES THE VARIABLES BeginTime AND theReport HAVE ALREADY BEEN DEFINED

theElapsedTime = (Date.Now - BeginTime).AsSeconds
theNumHours = (theElapsedTime/3600).Truncate
theNumMinutes = ((theElapsedTime.Mod(3600))/60).Truncate
theNumSeconds theElapsedTime.Mod(60)

theElapsedTimeString = "Time Elapsed: "
if (theNumHours > 0) then
theElapsedTimeString = theElapsedTimeString+theNumHours.AsString+" hours, "+
theNumMinutes.AsString+'" minutes, ''+theNumSeconds.AsString+'" seconds..."
elseif (theNumMinutes > 0) then
theElapsedTimeString = theElapsedTimeString+
theNumMinutes.AsString+" minutes, ''+theNumSeconds.AsString+'" seconds..."
else
theElapsedTimeString = theElapsedTimeString+theNumSeconds.AsString+" seconds..."
end

theReport = theReport+

"Analysis Began: "+BeginTime.SetFormat(""MMMM d, h:m:s AMPM'™)_AsString+NL+

"Analysis Complete: "+Date.Now.SetFormat(*'MMMM d, h:m:s AMPM"™) .AsString+NL+

theElapsedTimeString+NL+NL

Insert Error Checking Code: This is a very handy function for identifying problems in
scripts that are called by other scripts. ArcView reports the cause and location of a crash
in the current script that is running, but not causes and locations in called scripts.
Therefore this function will check to see if a script returns a “nil” value and, if so, will
give you a report describing any errors found in that script. When a called script crashes,
it returns a “nil” value to the calling script. ArcView in general will not crash unless that
nil value causes the calling script to crash. This function will add the following code at
the cursor location of the currently open script:

if (theResponse = Nil) then
theScript = myScript
msgBox.Report(*'Error Message: "+theScript.GetErrorMsg+NL++NL+
"Error Position: "+(theScript.GetErrorPos.AsString),
""" +theScript.GetName+"" crashed:")
return nil
end

You need to substitute the text “myScript” with the script that is being called.

This code snippet can also be modified to help you track down bugs that do not normally
tell you where the problem occurred (such as the “AVArray: Index ___ notinrange "
message). As soon as the script crashes, and you are wondering where in the script the
crash occurred, modify the code snippet as follows and run it in a separate script:

theScript = TheScriptThatCrashed

msgBox.Report(*'Error Message: "+theScript.GetErrorMsg+NL++NL+
"Error Position: "+(theScript.GetErrorPos.AsString),
""" +theScript.GetName+"" crashed:")

This snippet will produce a report telling you the character number where the crash
occurred, and you can use the EI button to take you to that location.

Replace TAB characters with Spaces: In some cases scripts may have spaces which are
actually TAB characters. This won’t happen if you type the script up in ArcView, but it

32

might happen if you copy-and-paste from other documents. | am not aware if there is any
problem with having TAB characters in the script, but I have run into some unexpected
problems with Asian installations of ArcView and I suspect they are due to characters
that are not translated correctly. Therefore I wrote this function to convert TAB
characters to Spaces (basically doing a substitute operation, replacing “9.AsChar” with
spaces.

You will be asked whether you want to replace TABs in only the current script or in all
scripts:

#2 Replace Tabs with Spaces: ﬁi

Replace Tabz [ASCI #9] with Spaces [ASCH #32]...

Replace in current scrpt... Caticel |

Feplace in all zoripts...

-

Quote Current Script: Converts the current script to a string by inserting quote marks
and “NL” in appropriate places. Generates a new compiled SEd document named
“I'Your Script Name]_Quoted” and containing the text:

theString =

<theQuotedScript>
Make Random Number script...: This function produces a script that takes advantage of
some code by Bill Huber to more accurately generate random numbers. You send the
script a minimum value, a maximum value and a desired number of decimal places, and
this script generates a random number within that range. See the sample code for details
on how this works.

Make Normal Random Number script...: This function produces a script that generates 2
normally distributed random numbers based on a specified mean and standard deviation,
using the Box-Muller transformation.

Make ‘Insert Commas in Number” script...: This function produces a script that takes a
number in either string or numeric format (i.e. “123456789.012”) and inserts commas
into it (i.e. “123,456,789.012”. See the sample code for details on how this works.

Generate String of Random Characters: This function is intended to generate a character
string to stand in as a placeholder, and will likely be substituted with other text later. For
example, if you make a report of the analyses performed by a script, you might make a
rough template of the report. You might then generate sub-reports throughout the
running of the script, and then you can substitute the placeholder random text with the
sub-report.

33

#! Generate Random Text String:

MHumber of Characters: | 3

Random Characters = I 7hbz5a2k3

Copy to Clipboard | Cloze |

0 Make Measurement Unit Dictionaries...: This function makes a script that returns two
dictionaries of measurement units. The first dictionary sets the enumerations (i.e.
“#UNITS_LINEAR_METERS”) as the keys and the unit names (i.e. “Meters”) as the
elements. The second dictionary sets the unit names as the keys and the enumerations as
the elements. See the sample code for the actual script.

0 Generate Geometric Function Scripts...: This function generates a variety of geometric
functions that I regularly incorporate into my extensions. These scripts are described
briefly below. See Appendix for samples of actual scripts.

 Create: ﬂ

i Select the scripts you would like ko

Geometnc O perations;

[~ Sort pointz according to = or v walue...

[Sort pointz according to bearing fram a poaint...

[T Calculate Bearng between bao points. .
[T Check Clockwize for 3 conzecutive paints. .

[Make Paint and Line given angindistance/bearing...

[~ Find Closest Points bebween bwo shapes...

[T Calculate area of triangle from three points...
[T Calculate area of tiangle frarm three 30 points...
[T Calculate area of tiangle fram lengths of 3 sides..

[¥ Calculate area and center of mass of polygar...

[T Calculate Internal Angle between 3 congecutive points...
[requirez "Calc Bearing'' zcript]

[T Generate Corvex Hull...
[requires "Check Clockwize" script]

[Check if ine segments craoss or fouch...

Cancel ()%

1) Sort points according to X or Y value: Given a list of points, this script will sort the
points according to either the point X- or Y-coordinates, in ascending or descending
order. It returns a list of sorted X- or Y-coordinates and a dictionary of points. The
dictionary keys are the X- or Y-coordinate values and the dictionary elements are lists
of points at that coordinate, sorted by the other coordinate.

34

2) Sort points according to bearing from a point: Given a single point and a list of
points, this script will sort the list of points according to the bearing of that point from
the single point. It returns a list of sorted bearing values and a dictionary of points.
The dictionary keys are the bearing values and the dictionary elements are lists of
points at that bearing, sorted in ascending order according to the distance from the
single point.

3) Calculate Bearing script: Given two consecutive points, this script will return the
compass bearing from the first point to the second point.

4) Check Clockwise script: Given three consecutive points, this script will return a
Boolean (True/False) value reflecting where the third point lies in relation to a line
extending from the first point to the second point. Returns “True” if the third point is
to the right of the line (clockwise), and “False” if the third point lies to the left of the
line (counterclockwise).

5) Find Closest Points script: Given two shapes (points, lines or polygons), this script
returns a line object connecting the closest point on the first shape to the closest point
on the second shape. You can use the start/end points of this line to identify the
actual closest points on the respective shape and to identify the bearing between these
closest points.

6) Make Point and Line script: Given an origin point, a distance and a bearing, this
script returns a new point at the specified distance/bearing and a line connecting the
origin to that new point.

7) Triangle Area from Points script: Given three points on a horizontal plane (as all
non-PointZ points are), this script returns the area of the triangle formed by those
three points.

8) Triangle Area from 3D Points script: Given three PointZ shapes, this script returns
the area of the 3-dimensional triangle formed by those three points.

9) Triangle Area from Sides script: Given the lengths of three sides of a triangle, this
scripts returns the area of the triangle bounded by those three sides. It returns a null
value if those three lengths cannot form a triangle.

10) Calculate area and center of mass of polygon: Produces the true center of mass
(centroid) of a polygon, which is different than the ESRI centroid. Also produces the
area of the polygon, which is the same as the ESRI-derived area.

11) Calculate Internal Angle script: Given three consecutive points, this script returns
the internal angle formed by the line connecting the first and second points and the
line connecting the second and third points. This script also returns the angle of
deviation, reflecting how much the bearing of the second line deviates from the
bearing of the first line.

12) Generate Convex Hull script: Given a list of points, this script returns a convex hull
polygon around the outermost points.

13) Check of line segments cross or touch: This checks two line segments to see if they
overlap, touch, or are separate. The difference between this function and the basic
Avenue “Shape.Intersects” request is that this script also checks to see if the lines just

35

touch each other vs. actually crossing over each other. To make it run slightly faster
in most of my applications, | wrote the script such that you need to send it a list of 4
points rather than a list of two line segments. The 1% and 2" points need to be the
start and end points of the first line segment, and the 3 and 4™ points need to be the
start/end points of the second line segment. The script then returns a O if the lines
intersect, a 1 if the lines just touch each other, and a 2 if the lines do not intersect.

Select the scripts you’re interested in and click “OK”. You will then be prompted to give
names for these scripts. Note that the Internal Angle script requires the “Calc Bearing”
script, and the “Convex Hull” script requires the “Check Clockwise” script. The names
you assign to the “Check Clockwise” and “Calc Bearing” scripts will be correctly written
into the “Internal Angle” and “Convex Hull” scripts:

! Enter Script Names: x|

Fleaze enter names for pour new Scriphs:

O

Calculate Bearing soript: | Sample.CalcBearing

Check Clockwize script: | Sample.CalcCheckClockmize Cancel

Find Clogest Pointz zcript | 5ample. CalcClozestPaoints

b ake Point and Line script: | Sample.CalcFointLine

Triangle Area from Points script: | Sample.CaleT ianglePoints

Triangle Area fiom 30 Paints script: | S ample. CaleT iangle30 Point

Triangle Area from Sides zorpt: | Sample. CalcTriangleSides

Calculate Intemal &ngle senpt | 5 ample. Calcl ntemalingle

Generate Convex Hull soript: | 5 ample. CalcCorvexHull

After you have identified the names and clicked “OK?”, the scripts are generated and you
will see a report of the scripts that were added to your project:

The following documents have been added to vour project: ﬂ
SCRIPTS:

- Calculate Bearnng scnpt ['Sample. CalcB earing']

-» Check Clockwize zonpt ['Sample. CalcCheck Clockmize']

-» Find Clogest Pointz zoript ['Sample. CalcClosestPaoints']

-» Generate Paoint and Line script ['S ample. CalcPaintLing']

-» Triangle &rea from Paintz zcnipt ['S ample. CalcT rianglePoints]
-» Triangle Area from Points scnpt ['S ample. CalcTnangle 30 Paints']
-» Triangle Area from Paintz zcript ['S ample. CalcT riangleSides']

-» Calculate Intemal Angle zoript ['Sample. Calclntermaltngle’]

- Eenerate Conves Hull zonpt ['Sample. CalcConvexHull']

L4]

o Compile All Scripts: This does exactly the same thing as the button described above.

36

Close All Scripts: This does exactly the same thing as the button described above.

Shrink all open scripts: This does exactly the same thing as the @ button described
above.

Shrink this script: This does exactly the same thing as the button described above.

Make New Dialog...: This does exactly the same thing as the button described
above.

Save Scripts, Dialogs, etc. to ODB...: This does exactly the same thing as the button
described above.

Extract Scripts, Dialogs, etc. from ODB file...: This does exactly the same thing as the
button described above.

Quote Text for VB6 Code: This substitutes the text in an existing script window with a
quoted version of that text, in such a way that VB can read it. Because VB6 limits the
number of line continuation characters you can use in a single script, this function sets
each line of text as a new line of code (i.e. no line continuation characters). For example:

dim lngIndex as long

dim 1lngSum as long

for IngIndex = 1 to 10
IngSum = lngSum + lngIndex
msgbox “Hello!”

next lngIndex

would be converted to the following:

dim strBaseString as String

strBaseString = "

strBaseString = strBaseString & "dim lngIndex as long" & vbNewLine
strBaseString = strBaseString & "dim lngSum as long" & vbNewLine
strBaseString = strBaseString & "for lngIndex = 1 to 10" & vbNewLine
strBaseString = strBaseString & " IngSum = 1lngSum + lngIndex" & vbNewLine
strBaseString = strBaseString & msgbox ""Hello!""" & vbNewLine
strBaseString = strBaseString & "next lngIndex" & vbNewLine

Generate Resize Text for VB Form: This function takes an existing VB form, analyzes it
for resizable controls, and generates the appropriate code to insert into the “Form_Load”
subprocedure. See appendix for sample of actual code generated. The resizing depends

on 3 class modules, which can be autogenerated with the code below:

Generate Resize Class Modules: This function generates the 3 VB class modules
necessary to make the Resize functions work. The code is adapted from original code
written by “neophile (n_e o _p_h_i_| e@yahoo.com)”. See appendix for actual code.

Search and Report Tools Menu:

(0}

Search Selected Scripts: Very similar to the Global Search Tool activated by the
button (see above) except that it only searches selected scripts instead of all scripts.

Search All Scripts...: This does the same function as the button (see above).

Search Dialogs for Script...: Searches all the standard dialog event scripts for a script
name, including all referenced scripts. Also searches all dialog control scripts and all of
their referenced scripts.

37

0 Search DocGUIs for script: Searches all DocGUI controls (menus, menu items, buttons,
tools and tool menus) for a script name, and produces a report listing all controls that
reference that script.

0 Go to line number in current script...: Inserts the cursor at the beginning of the specified
line number.

o0 Script Report with Line Numbers...: This gives you a report with the script name,
compilation status, creation data and creator. It also produces a version of the script with
line numbers appended to the beginning of each line. This text version can’t be compiled
because of the line numbers, but it can easily be copied and pasted into an empty script or
word processing document to serve as a reference:

O i

SCRIPT REPORT: OwlProject £oomdndkd akel ayout [Compiled] j

Created an Tueszday, April 15, 2003 12:04:03 P
Created by Jeff Jenneszs
450 ines, 14382 characters

1] ' DwlProject. ZoomaAndid akelapout

3] theYiew = av.GetdotiveDoc

4] theDizplay = thetiew. GetDizplay

B] theThemes = thetiew. GetT hemes

B] theGraphics = thetfiew. GetGraphics

7] theProject = av.GetProject

3] thePr| = theview. GetProjection

9] theWworkDir = av. GetProject. GetwforkDir
10] thetforkDirSh = thedwfarkDir AzSting
11] thel5 =Spstem. Get0S

13] i [Self = "Standard”) then
14] theFarameterDialog = av. FindDialog 'OwlProject. b akeB azicP arameters")

15] else =l

Copy to Clipboard Copy and Cloze Cloze |

o0 Script Recursion/Report - This Script: This gives you a report of general script statistics,
a report identifying all the scripts that this particular script references, plus all the scripts
that those scripts reference, etc: It also searches all scripts to find which scripts call this
particular script, and all DocGUI controls to see if any controls call this script.

38

’;‘ OwlProject.DataEntryORCapForm

cript Recursion:

' OwlProject DataEntryORCapForm

' HANE IS cmdORE_Capturef
theName = ==lf GetNams
if (theNames. Count = 143 then
anlndex = theName Right{1l)
elze
anlndex = theName Right{2)
end

' GET ENVIRONMENTAT VARIABLES

the(wlDREGs = System. GetEnvVar("OwlPriDRG=")

if (theCwlDRGs. Left(l) = "~") then thelwlDRGs = thelwlD]
thelwlDBEF = System . GetEnvVar("OwlPrDEF"%

if (theCOwlDBF Left(1l) = "~"} then theOwlDEF = theQwlDBEF
thelwlirthos = System GetEnwVar("OwlPrilrtho")

if (theOwlOrthos Leftd({l) = "~") then theOwlOrthos = thel

<44<<<<¢ CHECK CTURRENT HEADER DATE Zrrerrrerrrrrrrrzr

IDENTIFY DIALOG COMPONENTS
thelialog = av. FindDialog{"OwlProject DataEntry")
tztDay = thelialog.FindByHame("tztDay")
txtDayHight = thelDialog. FindByName("t=tDayHight")
tztFollowup = thelialog. FindByName("tztFollowup")
txtHonth = thelialog. FindByHamne("txtMonth")
tztHumObserwers = theDialog. FindByName("tztHunObservers
txtOb=erver? = theDialog.FindByName("t=ztObserver2")

General 5 cript Info:

-» 211 scripts

-» Minirmum Murnber of Lines: 1 [OwlProje ct. CallPoint&ddR outel D Field)
-» P awirum Mumber of Lines: 1281 [DwlProject. D ataEntrne0K]

-» Average Mumber of Lines: 56.8483
-» Total Humber of Lines: 11995

- Minimum Mumber of Characters: 32 [Script2]
- M awirum Humber of Characters: 53957 [leF'r0|ect D ataEntry0k]
-» Awerage Mumber of Characters: 2414.67
-+ Total Number of Characters: 503436
10 0
Scnpts Called By leF’r0|ect DataEntryDHEapForm
DwIF'r0|ect DataEntryDHEamem
-z OwlProject. CalcPaointE levation

«» OwiProject. CalcPaintLing
10 0
Scnpts That Call DwIF‘r0|ect DataEnlryDH EapFnrm

DwIF'r0|ect DataE ntryDHCapForm
- Fone -

|»

Kl

txtObserver? = theDialog.FindByName("tztObserveri") _r:I
3

A ' |

Copy to Clipboard | LCopy and Cloze | ’

o Script Recursion - All Scripts: This function gives you a report of general script statistics
and a report describing how the scripts in the project call each other. If a script calls
other scripts, those other scripts are shown below the script name and indented 2 spaces:

! Script Recursion: x| # Script Recursion: x|
General Scnpt Info ﬂ - none - d
- 211 <cnpts zzzlGetluadB oundary
- none -

- Minimurn Murnbe af Lines: 1 [0wlProject. CallPaintaddRoutel DField]
== Plawiman Munben ol Lines, 1281 OwlPioject DalaZnyp0k]

-3 fwerage Mamber of Lines; 56.84E3

- Tulal Muniber of Lines 11330

TR OO OO RO AR AR
SL,II|.IL) Thd A Zaller B_l,l Qb £ L,|||.|la
== Minimurn Hurmbe: of Characlers: 22 [Scipt2] ana lel"ro|cc,t Datal:ntryl"opulalcl'orl:lcbugglng
- b awimurn Mumber of Characters: 53957 [OwiProject. D ataE ntn 0K] - none -

» &vorage Mambe of Charactors: 241467
~» Tokal Murnber of Characters: 503456
I OO OO 0O R

OwiPioject AddCPGraphicsTaCunantiew

Scrpts That Call Qther Scipts: - none -

OwlPinject aaaResetScreenSizeFor 0244768

nionG

aaz_OwlProject. D ataE ninPopuateF oD ebagging OwlPioject 8PS eveFileDialogCancel
- HianeE - - hokeE -

MuaProje-t aaaRezAtS creanS izeFor] T4 7R8 MwlPinjert &PS sveFileNialngTherk MK
-none - “DalProect 475 aveFileDialogSelecFileType

OwiProject AddCPGiaphics T oCarentiews OwlPioject 4PS veFilelialogCloz=
-» DwdProjezt FindCallPointstd akeGraphics - none -
- DwlProject. CallPointCheck M ewFiskds
—+ DwlProiect. CalPoinkd ddR oute0-Point=ield OwlPiaiect 4PS 2veFileDialoa0E
- hone -

OwProjezt &P5 aveFileDialogCancel LI

Copy to Clipboard | Copy and Clos=2

Copy znd Claze | Copy to Clipboard |

o0 General Script Statistics: This produces a quick report of the minimum, maximum,
average and total numbers of lines and characters of code in your project, plus a list of the
currently uncompiled scripts:

o Script Code Report: This generates a single text string of multiple scripts, allowing you
to paste the actual script code into a word-processing document. The function first asks
you which scripts to use, then puts all the scripts into a single report window with a
“Copy to Clipboard” option. This function also allows you to flag script names with
some specified string, to allow word-processing macros to find them.

39

2! Script Statistics:] X

| »

General Script Statiztics: SCRIPT_TOOLS AFR

-+ 170 scnpts

-+ Minimum Mumber of Lines: 2 [Jenneszent. B ackl) pProjectFilel) pdate]
--» Mawirnum Murmber af Lines: B51 [Script10]

-» fverage Mumber of Linez: 454176
-» Taotal Mumber of Lines: 7721

- bimimurn Mumber of Characters: 8 [Scriptl 5]

-+ Mawimum Mumber of Characters: 24897 [Scnpt 2]
-» fverage Mumber of Characters: 1936.76

-» Total Mumber of Characters: 229250

The following zcriptz have not been compiled:
- Sonph
-» Scnpt10

Copy to Clipboard Copy and Cloze |

0 Check this project for Errors: When a script crashes, ArcView generally knows where in
the script the crash occurred. It sometimes shows you the location of the crash (when the
extension is compiled) or takes you directly to the location (if you are working in the
project with the original scripts), but not always. In particular, the “AVArray” error
message does not take you to the location or tell you where it is, even though ArcView
does know the location.

Furthermore, if you have many interconnected scripts in your project, you may not know
which script contained the original error. Script “A” might have crashed, resulting in a
“nil” value being returned to Script “B”, which might in turn cause Script “B” to crash.
ArcView may tell you that Script “B” crashed when you really need to know that the
problem occurred in Script “A”.

This function should be run immediately following a general crash. As soon as the
overall crash occurs, all scripts have information attached to them stating whether an
error occurred in them. This function examines all your scripts and tells you if any of
them have such an error (plus the location), as well as if any scripts are uncompiled.

40

! Error Repork: . X

Some gonipt or 2cripts appear to have crazhed or to othenwize have problems. Pleaze copythe «
text below to aid in debugging. [

FindDupes. DeleteDuplicates’
-» Error Mezsage: Script not found or not compiled...

FindDwpesz. |dentifyDuplicates’
-+ Error Message: Wrong class for parameter 1 of request +. Got aln) Mil, expected aln] String
-» Errar Position: 10762

'FindDupes. InzertCommas’
-» Eror Meszzage: A[n) Mumber object doez nat recognize request Az T okens
- Emor Pozition: 132

‘Serptd
-» Eror Message: Script not found ar Aot compiled...
'Scnptd!
-+ Error Meszsage: Scrpt not found or not compiled... b
Copy to Clipboard | Copy and Cloze Cloze |
A

0 Generate Script to Check Scripts: This does a similar function to that described above,
but is intended more to help identify problems on a remote computer where somebody
else is using your compiled extension. If someone reports some obscure error message to
you and you are unable to determine the cause or location based on the user’s description
(such as an “AVArray” message), then use this function to generate a script for that user
to run on their computer. This script will examine all the scripts that you specify.

For example, if a user reported an error to you such as the following:

! Error in FindDupes.IdentifyDuplicates at 10762 ﬂ

“wirong class for parameter 1 of request + Got ajn] Mil, expected

aln] String
Help |

You may be able to find the error easily enough by simply going to character number
10762 in the script “FindDupes.ldentifyDuplicates”. However, this script may have
crashed because of problems in other scripts, and then the bug hunt becomes much
harder.

This function allows you to search for problems in 2 different ways:

1) You can generate a quick script that will search for errors, and you can then send that
script to the user who is having problems. The user can run the script and send a
report back to you.

2) You can automatically generate a script, install it in your project, and insert menu
choices in the various GUI Help menus which will run the script. This option is more

41

useful if you wish to pre-install the error-checking functions before distributing your

extension.

Click the “Generate Script to Check Scripts” menu item, select the scripts you want to be
examined on the user’s computer, and select your options.

Generate Error-Checking Script:

#2 Frror Checking Script:

[
|
" Generate Script Text in Beport Window =
' Generate and Compile Actual Script
v Attach Script to Help Menus
Cancel |

' Check zoripts in project for erors. ..

thes cripts = {
"FindDupes.CheckDuplicates",
"FindDupes.ConvertT oString”,
"FindDupes.DeleteDuplicates",
"FindDupes. DupeT ypelCancel”,
"FindDupes.DupeT ypellose",
"FindDupes. DupeTypelK",
"FindDupes. DupeT ypelpen',
""FindDupes. |[dentifyDuplicates",
""FindDupes. |[dentifyUniquet/alues",
"FindDupes. InzertCammas"',
"FindDupes. InzertCammas_zample",
"FindDupes. ReportDialog_Cloze",
"FindDupes. R epartDialog_Copy'',
"FindDupes. RepartDialog_CopyClose',
"FindDupes. ReportDialog 0K,
""FindDupes. ReportDialog_Open,
"FindDupes. ReportDialog_Run®',
O AN SR F = SNPOT

Copy to Clipboard Copy and Cloze

| 1x

oK |

Lapout

S rrink ;I

! Enter Script and Menu Label Names:

Fleaze enter names far your new scipt and Help menu labels...

Cancel |

‘Check Seripts' Script Mame: | Jennessent CheckS criptsFarE mors

Help Menu Labelz | Check "Seript/Dislog Tools" scripts...

Help Topics...
How to Get Help...

x|

About Archiew. .

Check "Scrpt/Dialog Tools" scrpts...

-

In any case, the script will produce a report similar to that below:

i Error Repork: i

X

below to aid in debugging.

'FindD upes. |dentifyDuplicates'
-+ Error Pozition: 10762
'FindD upes. InzertCommas’

-3 Ermrar Pazition: 192

Some sorpt or scripts appear bo have crazhed or to athenwize have problems. Pleaze copy the text :|

-+ Error Meszage: Wrong clazs for parameter 1 of request +. Got a[n] Mil, expected a[n) String

-3 Ermar Meszsage: A(n] Mumber object does naot recognize request A:Tokens

Search Scripts for Odd Characters: | have had a few experiences where my extensions
unexpectedly crashed on Chinese computers, which leads me to think that it is possible
that unusual characters in the code might trigger the problem. Therefore this function

searches your scripts for any character that might not be considered a “standard”

42

character. Basically it alerts you if it finds any characters with ASCII values that are not
between 32 and 125.

x

---------- Special Character Search: -
Aeceptable Characters = 1"#3%8 1+ - /01 23456789 <= WRABCDEFGHIELMNOPORSTUNWYZ[N ™ abedefahifkimnoparstusasspzil

Jennezsent. Excellmport
[Ling 57, Pasition 13] [ASCI #3)
[Line &7, Position 14] [45CI #3)

Script1h
[Line 36, Posiion 5] [ASCI #3)
[Line 38, Posion 6] [ASCI #3)
[Line 107, Position B3] @ [ASCH #-40]
[Line 107, Pozition 7001 [ASCI #-71)
[Line 107, Pozition 711 @ [ASCH #-40]
[Line 107, Position 72] £ [ASCI #-73)
[Ling 107, Position 73] @ [ASCI #-40) j

Copy to Clipboard Copy and Cloze Cloge | /
i

o Statistics on Visual Basic 6 Project: This function allows you to select an existing Visual
Basic 6 project and generate a set of basic statistics describing that project:

il select Yisual Basic Project:

|

File: Marne; Directaries; ok |
| link.agesz. vbp d:harcgiz_stuffconsultationsaz._linka

= d o Cancel |
[= arcgiz_stuff
[=+ consultation
[= az_linkages
&= vb_code

£ esnvbdebughelper
(. £ help

it 771 installer LI

Lizt Filez of Type: Dirives;
| VEE Projects | [|

43

! visual Basic Project Analysis:

Yizual Basic B Project Report:
-+ Project Title = "Linkages"
-+ Project Executable = "Linkages. dlI"
-+ Project Mame = "Linkages"
-+ Project Description = "Coridor Designer; Tools to generate and analyze wildlife habitat coridors.”
- Project Version = 1.4.440
-» Project Company Mame = "Jenneszs Enterprizes’
-» Project Resource File = "Linkages RES"
- Project Filename = d:\arcgiz_stuffvconsultationhaz_link ageshwb_codeilinkages vbp

General Statistics:
-+ 11 forms...
=» 19 claszes. .
=» 11 modules...
=» 26,109 inez of code
-» 932 679 total characters

11 Forms; == = = o = -

1] frr_Summarize. frm
-+ File Location = d:\arcaiz_stuffsconzultationhaz_linkageshwb codehfron_ Summarize. frm
-» File Existz = true
-» Mumber of Linez = 4,216
-» Mumber of Characters = 186,171

2] frmébout frm
-» File Location = d:harcgiz_stulfueonsultationtaz_linkages'wh_codehfrmdbaut frm
-» File Exists = true
-» Mumber of Lines = 354
-» Mumber of Characters = 13,926

3] frmnClip. frrm
-» File Location = d:harcgiz_stuffuconzultationhaz_linkageshwb_codehfrmClip. fron
- File Exigtz = true
-» Mumber of Lines = 1,167
¥ Murnber af Characters = 41658

4] frrnE zrilluztration. frm
-+ File Location = d:\arcaiz_stuffsconzultationhaz_linkageshyb codehfronE srilllustration. frm
- File Exists = true

Copy to Clipboard | Copy and Close |

[1x

o Copy VB6 Project Files: This function examines a VB6 project file using the
algorithm from the function above, then copies all project, form, class and module
files into a new directory. This makes it easier to send the VB6 project file to others,
without including extra unnecessary files that may exist in the directory.

o Combine VB Project Files into Document: This function combines all files into a
single RTF document, including the report described above, where it can be opened
using MS Word.

Table Buttons:

The button does an Unjoin on the current table so you don’t have to search through the
menu for it. It is only enabled if the active table has joins.

The % button exports a table to an Excel spreadsheet.

The % button imports selected records from an Excel spreadsheet into a dBASE table. This
function requires that Excel be open and the records be selected.

44

Table Menu ltems:

Table
it Ll Eroperties. . Sart Azcending
[Capy [Zhrl#E Chart... Sart Descending
Faste (Lt Start Editing Create |ndex
[Ihdo Edit [g Save Edits L
Fedg Edit [Etrl+" Save Edits Az, Colleilaia
AddField... Eind... Chl+F izt
#dd Fiecord Lot Query... Ctri+() Show Field |nformation
[Nelete Field Framaote " " 4
[Melete Becards i Chled
Select all Bemave bl Jaims
Select Mone Lirik:
Switch Selection Bemovedll Links
Delete Multiple Fields. .. Refresh

Add Record Mumber Figld

|dentify T able Source

|dentify Field Types
Generate 'Find', ‘Make' field code:

° Delete Multiple Fields...: prompts you to select a set of fields, then deletes them all.
There is no UNDO for this operation!

° Add Record Number Field: adds a new numeric field to your table and populates that
field with the record number for each record. This is an easy way to generate unique ID
values.

° ldentify Table Source: shows you the file source of your table, plus any joined files:

i Table Source: E

Table Source: =]
chesihay_gizdMhancviewh] _jeffsonptsconsultationhfos_telemetntdatahfos_locs 78 dbf

Joined \WWith:
-» ohvesrhay_gisdlharcyiew’_jeffzorptzhmake_extha_join_field2. dbf
-r cheshay_gizdlharcviewt]_jeffscnptshmake_estha_join_fieldl.dbf

° Identify Field Types: generates a report listing details of all fields in the table:

45

! Field Types

fox_loced8.dbf: -

REC_MUM: MHumber, Decimal
[HFIELD_DECIMAL: Precizion = 11.0]

FOx_ID: Strng, Char
[HFIELD_CHAR Precizion = 16.0]

DATE: Mumber, Date
[HFIELD _DATE ; Precision = 8.0]

TIME: Sting, Char
[HFIELD_CHAR ; Precizsion = 16.0]

OBSERVERT: Sting, Char =

o

Generate ‘Find’, *‘Make’ field code: gives you an easy way to write code to either find
the fields in this particular table, or make new fields identical to these fields. Notice that
ArcView usually identifies a numeric field type as Decimal no matter what you originally

created it as. | don’t know what this means, but you may need to redefine your field
types afterwards.

46

a_join_field1.dbf
Arts Awnlh Haz e | Fac e 7| oo s J iz e Szl
__________ I 814 0 0 0 0.0000 ni =
__________ 1 =F] 1 1 1 0.0000 a
2 1045 2 2 2 0.0000 a
3 355 3 3 3 0.0000 I
4 940 4 4 4 0.0000 I
__________ 5 408 5 5 5 0.0000 I
__________ E 30 5 g g 0.0000 a
7 165 7 7 7 0.0000 a
g 704 g g g 0.0000 a
9 560 3 9 9: 0.0000 EIE
__________ 10 2921 10 10 10 0.0000 n; —
1 [»]

#! Find/Make Field Report: x|
a_join_field1.dbf [7 fields) a
[e:esnhay_gizd0harcview1_jeffscriptzimake_e=tha_join_field] dbf] [l
T ab 'Find Field' code:
thet/T ab = av. GetdctiveD oc. GetvT ab
thejoin1 aField = the T ab. FindField[join1 a™
thejoinbField = thel/'T ab. FindField("join1b")
theFec_numField = the¥/'T ab.FindField("Fec_num"]
theFec_num_1Field = the®'T ab FindF ield["Rec_num_1"]
theRec_num_2Field = the®'T ab.FindF ield["Rec_rum_2"
thetestField = the''T ab. FindField[test ")
theaaa bh coField = thetTab FindField"aza_bb e
‘Make Field' code:
thejoinl aField = Field Mak e["jain1a", #FIELD_DECIMAL, 1E. 0]
thejoinbField = Field Mak e[join1b", #FIELD_DECIMAL, 16, 0]
theRec_numField = Field Make["Rec_num", #FIELD_DECIMAL, 11, 0)
theRec_num_1Field = Field Make["Rec_num_1", BFIELD_DECIMAL, 171, 0]
theRec_num_2Field = Field Make('Fec_num_2", #FIELD_DECIMAL, 11, 0]
thetestField = Field.Make(test", #FIELD_DOUELE, 16, 4)
thetestField Setilias] test aliaz']
thewaaa_bb_ccField = Field.Make("aas_bb_cc", #FIELD_DECIMAL, 16, 0]
theaaa bb coField Setdlias asalbbjcc']
thet/T ab.AddFieldz({thejoin] aField. thejoin1bField, theRec_numField, theRec_num_1Field, theRec_num_2Field, thetestField, theaaa_bb_ccField})

FTab 'Find Field' code:

theFTab = theTheme.GetFTab —
theqoin aField = theF T ab. FindFigld["join1a"

thejoinbField = theF T ab. FindField["join1b"]

theR ec_numFisld = theF T ab. FindField"Rec_num'’

theFec_num_1Field = theF T ab.FindField["Rec_num_1"

theFec_num_2Field = theF T ab.FindField"Fec_num_2") j
HombmrbEinld = HLAET -k D AC AL e m b1

Copy to Clipboard | Copy and Cloze | Cloze |

The code illustrated above is duplicated for both VTab and FTab objects, so you can copy
only the portion you want.

° Show Field Information: shows you the field data on that particular field:

47

& Field Types E

JOIMZE: Mumber, Decimal

[HFIELD_DECIMAL: Precizion = 16.0]

-THIS FIELD 15 A JOIMED FIELD -
Sounce;

c:hezrhay_gisdlharcviewt] jeffscnptzimake_extha_join_field2. dbf

()

View Buttons:

The @ button takes you forward through the list of Zoom Undoes. It’s basically the

View Menu ltems:

Eroperties... Eroperties...
&dd Theme... Chrl+T Start Editing
Fencode Sddiesses,.. Save Edits

Add Event Theme. ..
Hew Theme...
Themez On
Themes Off

Show All Legends
Hide &ll Legends
Set All Themes Active

Set All Themes [nactive

Save Editedie.,
Convert to Shapetile...

opposite of the “Zoom Undo” button and becomes disabled any time you manually zoom to a
new location. It becomes enabled as soon as you use the “Zoom Undo” function.

tare Toolz

Palyline Theme to Polygon...
Palygon Theme to Polyline. .

Corwert Theme to ESRI Centroids...
Corveert Theme to True Centroids..
Palyline/Faolvaon Theme to Paint

Edit Legend...
Hide/Show Legend

Convert Graphics to Shapefiles. ..

TOC Style...

Full Extent

Zoom Jn

Zoom Out

Zoom To Themes
Zoom To Selected

Zoof Freyious

T e L e B I e Lt h o

. Colar Bar from Legend

T : Chl+L
Hemove Latels [Etrl+H
Hemove Uverlappmng Labels
Eansert Dyverlapping Labels Cir+d

Eird... Chl+F
lLocate fddress:;

Takle...

Cuemn... Chrl+0C)
Select By Theme...

Create Buffers...

Clear Selected Features

.-i'-.u:ld.-"Ll'pu:Iate firea alues
Add/Update Length ¥ alues
Add/Update =5 Coordinates

48

View Menu:

o

o

Show All Legends: This opens all the legends for all the themes in the view.

Hide All Legends: This closes all the legends for all the themes in the view, allowing you
to see more of the theme names if you have several themes included.

Set All Themes Active: Sets all themes as active. This is useful if you want to delete all
or most of the themes in your view and you don’t want to click on each one separately to
make it active.

Set All Themes Inactive: Sets your table of contents so that none of the themes are active.
This is useful if you want to test your “update” scripts for tools that work on active
themes.

Menu:

Theme

o

Ty

ﬂ Cities.shp
L]

Color Bar from Legend: This extension can create graphic color bars for any grid or
feature theme in your view, based on the current legend you have set for that theme.
These color bars can help make nice legends for final maps.

This function will automatically work on all active grid or feature themes in your view,
so begin by clicking on those themes to make them active. Next, simply click the “Color
Bar from Legend” menu item in the “Theme” menu and specify whether you want the
color bars to be vertical or horizontal.

i Cities.shp Color Bar =]

-——=

"

8247 - 20971
20972 - 37305
37306 - 60467
GO162 - 91444
91445 . 138739
129740 - 210942
210844 - 3357495
335706 - 516249
S16260 - 935932
935024 - 16305532
1630554 - 34845308
3425200 - T322564

49

The function makes two color bars; one of which shows only the colors that are actually
used in the legends (12 in the example above), while the other smoothly blends between
colors.

These color bars are actually in View documents, so they can be added to layouts using
the “Add View Frame” function. The color bars can also be copied from the Color Bar
window and pasted directly into your views, in which case they will likely need to be

resized and repositioned in order to look aesthetically correct. They can be resized and

repositioned in the same manner as any other graphic shape by selecting it with the L'
button and then moving the shape or dragging one of the handles.

You can also take a screenshot of the color bar to paste it into graphic-editing software
(i.e. Photoshop, Photopaint, etc.). Click [Alt]-Print Screen to copy the image to the
clipboard, then [Control]-V to paste the image into your graphics software.

Add/Update Area Values: This function will only be active if you have a single polygon
theme active in your view. It will add polygon area values for all polygons in the theme,
to either a new field or an existing field. If your view is projected, you have the option to
calculate projected area values.

Add/Update Length Values: This function will only be active if you have a single
polyline theme active in your view. It will add polyline length values for all polylines in
the theme, to either a new field or an existing field. If your view is projected, you have
the option to calculate projected length values.

Add/Update X/Y Coordinates: This function will only be active if you have a single point
theme active in your view. It will add X- and Y-coordinate values for all points in the
theme to either new fields or existing fields. If your view is projected, you have the
option to calculate coordinates.

More Tools Menu:

o

Polyline Theme to Polygon: This function will only be active if you have at least one
polyline theme available in your view. It will convert polylines to polygons by
connecting the beginning and end of the polylines. It will add area and perimeter fields,
plus all the original fields from the original polyline theme.

Polygon Theme to Polyline: This function will only be active if you have at least one
polygon theme available in your view. It will convert polygons to polylines, adding a
length field plus all the original fields from the original polygon theme.

Convert Theme to ESRI Centroids: This function will only be active if you have at least
one feature theme (point, polyline or polygon) available in your view. It will convert the
original shapes to centroids and add them to a new point theme. It will not add
coordinate fields, but these can be added using the “Add/Update X/Y Coordinates: “ in
the “Theme” menu above.

Convert Theme to True Centroids: This function will only be active if you have at least
one feature theme (point, polyline or polygon) available in your view. It will convert the
original shapes to true centroids, defined as the center of mass of the shapes, and add
them to a new point theme. The true center of mass is sometimes different than the

50

ESRI-derived centroid. It will not add coordinate fields, but these can be added using the
“Add/Update X/Y Coordinates: “ in the “Theme” menu above.

Polyline/Polygon to Point: This function will only be active if you have at least one
polyline or polygon theme in your view. It will break the original shape down into all the
component vertices and add these vertices to a new point theme. The new point theme
will contain all the original fields from the original theme.

Convert Graphics to Shapefiles: This function will convert all point, polyline and
polygon graphics in your view into shapefiles, and then add them as themes in your view.
Click this item and you will be prompted to identify which graphics to convert:

i} Graphic Conversion Options: il
Pleaze zelect the graphics pou would ke to corvert to "
shapefiles. |f you select an option with no actual thapes, no
shapefile will be created. |f desired, both Polyline and Palygon
zhapefiles can be generated from combined Palyliine and Palygon
araphics. =

1] Paint 5hapefile: 0 Paints |
2] Palyline Shapefile: 33 Palvlines
3] Palvline Shapefile: 33 Palvlines + 1 Palygon
4] Palygon Shapefile: 1 Polyaon
5] Polpgon Shapefile: 33 Polylinez + 1 Palygon
[T Just Selected Graphics { Cancel Ok

51

Modifications:
July 30, 2002: Fixed a bug in the “Save All Scripts” button

Changed “Modified Dialog Saver” so that folder button opens to current working directory.

Changed “Modified Dialog Saver” so that the default file name is the same as the dialog, with any “.” or space
symbols replaced by underscores.

August 1, 2002: Version 1.1

Modified the “Global Find” tool so it also searches uncompiled scripts. It indicates the fact the script was not
compiled by adding “[- Not Compiled -]” to the script name in the report.

August 4, 2002: Version 1.12
Modified the “Global Find” tools so that it correctly searches uncompiled closed scripts.
August 2, 2002: Version 1.15
Added several table menu items:
° Edit: Delete Multiple Fields
° Table: Identify Field Types
° Table: Identify Table Source, including Join Tables
° Field: Show Field Information
November 2002: Version 1.19
Added tools to make dialogs and to produce lists of the components
December 2002: Version 1.20

Modified the “Save Objects” tool to also save spaces (i.e. in menus, button bars and tool bars), provided the custom
spaces have something written to their “tags”. It saves the space if the tag <> nil.

Added View menu items to activate/deactivate all themes and to hide/show all legends.
January 2003: Version 1.25

Modified the “Make New Dialog” tool so that you can specify which scripts you want to make, and whether you want
the new dialog to be modal and/or resizable.

February 6, 2003: Version 1.28

Added tools to shrink scripts to minimum open size, and added the “Add to ODB” and “Extract from ODB?” tools to the
Dialog and Project button bars.

February 13, 2003: Version 1.28

Added tools to add record number fields to tables and to add basic intro code to scripts.
February 26, 2003: Version 1.31

Expanded “Make Dialog” function to make 4 types of basic dialogs
March 1, 2003: Version 1.32

Corrected an error in the “Make Progress Meter” dialog in which it wasn’t importing the progress icon image
correctly.

Added the option to select from Document Tables in the “Make Theme/ID” dialog.
April 27, 2003: Version 1.42

Added all Script, Project and Dialog menus. Added geometric function scripts, script recursion tools, dialog report
tools, “Remove Joins” button and modified comment function.

May 13, 2003: Version 1.43

Corrected a bug in the “Extract Scripts from ODB” script in which it produced an error message upon extracting a tool
or button separator.

May 19, 2003: Version 1.46
Added a button to go to a specified location in the script.

May 25, 2003: Version 1.47

52

Added shortcuts to “Select All”, “Comment” and “Uncomment” script actions.
May 26, 2003: Version 1.48

Added a listbox dialog to the list of standard dialogs.
June 3, 2003: Version 1.49

Added a Table menu function to generate code that finds and makes fields similar to those in the current table. Also
added scripts to sort points based on X/Y coordinates or bearing from a central point.

June 17, 2003: Version 1.52

Added a geometry script to check if line segments intersect. Changed all report boxes to the customized report
dialog with the “Copy to Clipboard” buttons. Added a script report function to describe the script and add line
numbers to the code.

June 28, 2003: Version 1.56

Modified Table Field Report to show both VTab and FTab “FindField” and “AddFields” code.
July 1, 2003: Version 1.57

Added a tool to rearrange the tab order for controls on a dialog.
July 25, 2003: Version 1.60

Added a report of script length statistics to the script recursion reports.
August 14, 2003: Version 1.63

Added a random number generator script.
August 19, 2003: Version 1.65

Modified the “Copy Doc” request to fix a bug copying dialog editors.
October 1, 2003: Version 1.69

Added a function to search dialogs for a particular script.
Added a function to return forward through the “Undo Zoom” steps.

October 2, 2003: Version 1.70

Added a function to insert the cursor at a specified line number in a script.
Modified the “Reverse Undo Zoom” button to position itself next to the “Undo Zoom” button.

October 3, 2003: Version 1.71

Added a “search all scripts” button to the Dialog Editor button bar.
Added a button to open dialogs from *.ded files to the Project button bar.

October 7, 2003: Version 1.72
Added an option to produce a “Insert Commas in Number” script.
October 10, 2003: Version 1.73

Added the “Script/Dialog Tools” menu to the project GUI, with menu items for extracting scripts from files and making
project files portable.

October 16, 2003: Version 1.76
Added the “Control Tools” menu to the Dialog Editor GUI, with menu items for shifting and resizing graphic controls.
October 24, 2003: Version 1.78

Fixed a bug that triggered an error when unloading the extension (bug says something like “Unable to find script
‘Jennessent.MakeCopyDoc™)

November 2, 2003: Version 1.80
Added Pattern-style searching to the Global Search tool.
November 22, 2003: Version 1.81
Modified Script Recursion tools so that it doesn'’t identify a script calling itself.
January 8, 2004: Version 1.83
Modified “Build List Dialog, Sortable with Add/Remove” option so the dialog has “Available” and “Selected” labels.

Added an option to generate a “Desired Projection for Calculations” dialog.

53

January 14, 2004: Version 1.84
Added support for Multipoint shapes to the FindNearestPoints script.
February 12, 2004: Version 1.85
Added a keystroke shortcut to put parentheses around selected script text.
February 15, 2004: Version 1.86
Added code to insert “Make/Print ODB” code, which will display a text representation of an object.
February 18, 2004: Version 1.88

Added code to generate Normally Distributed Random Numbers script.
Modified the “Make Select Projection Dialog” function to include an option for Great Circles in the dialog.

March 4, 2004: Version 1.90

Added code to make a quoted version of a script.
March 19, 2004: Version 1.91

Added functions to shift dialog controls to the vertical and horizontal center of the dialog.
November 30, 2004: Version 1.93

Added function to convert polylines/polygons to points.

Added functions to calculate area fields for polygon themes, length fields for polyline themes, and X/Y-Coordinate
fields for Point themes.

December 1, 2004: Version 1.94
Added function to true center of mass.
Added function to create true center of mass script.
Added function to convert polygons to polylines.
January 11, 2005: Version 1.95
Added option to convert graphics to shapefiles.
January 30, 2005: Version 1.97
Add “Time Elapsed” code snippet.
Added corner resize bars to Report and Theme/ID Dialogs
February 8, 2005: Version 1.99
Added functions to search DocGUIs for script names
February 27, 2005: Version 1.992
Modified “Make Theme/ID Dialog” functions so you could specify that “No ID Field” popped up in the list of ID fields.
Added Error Checking code snipped, which locates errors in called scripts.
July 9, 2005: Version 1.995
Several minor changes
Added button to Dialog button bar which adds corner bars to dialogs.
Added option to create color bars from view themes.
July 21, 2005: Version 1.996
Added keyboard shortcut to search current script for text.
Added keyboard shortcut to open help files on a request or object in script.
October 7, 2005: Version 1.999
Added functions to identify problems in multiple scripts, and broke the “Script Tools” menu into 2 separate menus.
Removed all unusual characters, hoping to resolve a problem generated by the Japanese patch to ArcView 3.3.
October 26, 2005: Version 1.9992

54

Fixed two bugs in the ‘Export to Excel’ function in which it did not correctly export boolean values and it occasionally
was unable to find the Excel.exe file.

Fixed a bug in the auto-generated listbox function in which the associated scripts were incorrectly named.
October 27, 2005: Version 1.9993

Modified “Add Commas in Number” script so that it allows you to send it both numbers and strings, and set a
precision level for the return string.

January 2, 2006: Version 2.0

Modified Report Dialog creation tool so that the sample “MakeReport” script takes 3 parameters instead of two. The
3 parameters are now {report text, report title, modal}. The dialog itself is preset to modal or nonmodal based on the
user’s input.

Modified the “Search Dialogs for Script” and “Search DocGUIs for Script” functions so that they would automatically
insert the current script name if they were called from a Script document. If called from a Dialog document, they will
not insert any text into the input dialog.

Added a function to generate a string of random characters, which is useful in some cases when inserting text in an
existing string. These random characters make useful placeholders.

Fixed a bug in the “Go to Character Number In Script” function in which it would crash if you entered a number larger
than the script maximum character value.

Fixed a bug in the “Go to Line Number in Script” function in which it would drift from the true line number in large
scripts.

Added a function to the “Dialog Tools” menu to search all scripts for references to a dialog.

Added functions to distribute controls on the dialog so that they maintain a constant horizontal or vertical spacing
between the origin points. This differs from the standard distribution function in that this may force one of the end
controls to shift slightly to maintain the constant distance, while the standard function keeps both end controls the
same. The standard function usually has a few controls that are slightly closer to each other than the rest, though.

Added the number of Dialogs to the “Script Statistics” report.

Fixed a bug in the “Convert Graphics to Shapefiles” function in which it did not correctly convert polylines to
polygons.

Added a first draft of functions to convert ArcView 3.x Dialogs to Visual Basic 6 Forms.
February 15, 2006: Version 2.0004

Modified the Dialog Export tool to add functions for resizing dialogs.

Added tools to generate resize class modules for VB 6 projects.

Added tools to generate resize text for existing VB Forms.

Added a tool to search all ArcView scripts for odd characters that might make it crash on Asian installations.
March 12, 2006: Version 2.0005

Modified the “Generate Script to Check Scripts” tool so that it would optionally generate an actual script and auto-
install Help menu items.

Added Help menu items to Script/Dialog Tools Doc Types
May 24, 2006: Version 2.0006

Fixed a bug in the Convex Hull script, caused by a situation in which the left-most or right-most points lie in a column
with identical X-values, and when there are more values in this column than there are unique X-values in the dataset.

March 2, 2007: Version 2.0008

Fixed a bug in the “Make project file portable” script, in which it would make duplicate datasets in the “portable”
folder.

Added code to automatically load the “Script Decryptor” extension if that extension was available.

Modified the “Sort Clockwise” script so it would return the points sorted clockwise, and with the largest gap in
compass bearing (going clockwise) occuring between the last point and the first point in the list. It now also returns
the range of compass bearings between the first and last point. It also rounds compass bearings to the nearest
1000" of a degree before sorting them.

March 11, 2007: Version 2.0009

Added a function to generate a “Select Folder” dialog.

55

Added a function to generate a “Select Color” dialog.
March 15, 2007: Version 2.0010

Modified the function to generate a “Select Folder” dialog to make it more flexible and aesthetic.
April 25, 2007: Version 2.0011

Further modified the function to generate a “Select Folder” dialog to make it more flexible and aesthetic and to
correct a minor bug.

September 6, 2007: Version 2.0012
Added a function to generate descriptive statistics on existing VB6 projects.
October 25, 2007: Version 2.0014
Added a function to export VB6 projects.
November 3, 2007: Version 2.0015
Added a function to combine all form, class and module files from a VB6 project into a single rich text file document.
November 3, 2007: Version 2.0016

Added a function to quote text in such a way that VB6 can use it.

56

Appendix: Scripts Generated

Basic Dialog Scripts
“OPEN” script:

' jennessent.SampleDialogOpen

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnExtent / (2@2))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize /
MovePoint = AVCenter - halfDialogWidthHeight

Self .MoveTo (MovePoint.GetX, MovePoint.GetY)

theDialog = self

cmdOK = theDialog.FindByName ("cmdOK")

cmdCancel = theDialog.FindByName ("cmdCancel")

“ACTIVATE” script:

' jennessent.SampleDialogActivate
theDialog = self

cmdOK = theDialog.FindByName ("cmdOK")
cmdCancel = theDialog.FindByName ("cmdCancel")

“CLOSE” script:

' jennessent.SampleDialogClose
self.SetObjectTag(nil)

self.FindByName ("cmdOK") .SetObjectTag (nil)
self.FindByName ("cmdCancel") .SetObjectTag (nil)

“OK” script:
' jennessent.SampleDialogOK
self.GetDialog.Close
“CANCEL” script:
' jennessent.SampleDialogCancel

self.GetDialog.SetModalResult (nil)
self.GetDialog.Close

MultiChoice Scripts:
“MultiChoice™ script:

(2@2)

57

® Jennessent.SampleMultiChoice

if ((self.Count) <> 4) then
msgBox.Warning(*'Wrong number of parameters for MultiChoice Message Box; expected 4.",
"Avenue Runtime Error:')
return nil
end

theMessage = self.Get(0)
theTitle = self.Get(1l)
theListOfLabels = self.Get(2)
theListOfLists = self.Get(3)

if (theMessage.Count > 55) then
theWords = theMessage.AsList
theCounter = 0
theTempMessage =
for each aWord in theWords
theCounter = theCounter+aWord.Count+1
if (theCounter > 55) then
theTempMessage = theTempMessage+NL+aWord
theCounter = 0

else
theTempMessage = theTempMessage++aWord
end
end
theMessage = theTempMessage.Trim

end

if (theListOfLabels.Count <> theListOfLists.Count) then

msgBox. Info(*'"Number of labels is not equal to number of lists! Bailing out...", "Problem:™)
return nil
end

" FOLLOWING JUST BECAUSE DIALOG BECOMES TOO BIG FOR MANY SCREEN RESOLUTIONS
if (theListOfLabels.Count > 20) then

msgBox. Info("'Too many lists! Please limit number of lists to <= 15._.", "Problem:")
return nil
end

AllIStrings = True
for each alLabel in theListOfLabels
iT (aLabel.ls(String).Not) then
AllStrings = False
break
end
end

if (AllIStrings.Not) then

msgBox. Info(*'Labels (parameter 2) must all be strings! Bailing out...", "Problem:")
return nil

58

end

® IDENTIFY LOCATIONS FOR DIALOG COMPONENTS
theBasicHeight = 55

theAddedHeight = theListOfLabels.Count*30
FinalHeight = theBasicHeight+theAddedHeight
theWidth = 428

theSize = theWidth@FinalHeight

theRect = Rect.Make(0@0, theSize)

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnkExtent / (2@2))
halfDialogWidthHeight = theSize / (202)

MovePoint = AVCenter - halfDialogWidthHeight

theRect.SetOrigin(MovePoint.GetX@MovePoint.GetY)

" MAKE DIALOG

theDialog = Dialog.MakeSized (True, True, True, True, theRect)
theDialog.SetModal (True)

theDialog.-SetTitle(theTitle)

theControlPanel = theDialog.GetControlPanel

" ADD COMBO BOXES
theYPos = 25
theCounter = 0
theListOfCbxNames = {}
for each anlndex in O..(theListOfLabels.Count-1)
theComboFasteners = {#CONTROL_FASTENER_TOP, #CONTROL_FASTENER_LEFT, #CONTROL_FASTENER_RIGHT,
#CONTROL_FASTENER_HEIGHT}
theCounter = theCounter+1
theYPos = theYPos+30

theComboBox = ComboBox.Make

theComboBox . SetName (*'AComboBox''+anlndex.AsString)
theListOfCbxNames.Add(theComboBox.GetName)

theComboBox.SetLabel (theListOfLabels.Get(anlndex))
theControlPanel .Add(theComboBox, Rect.Make(7@theYPos, 321@114))
theComboBox . SetFasteners(theComboFasteners)
theComboBox.DefineFromList(theListOfLists.Get(anlndex))

end

theButtonFasteners = {#CONTROL_FASTENER_TOP, #CONTROL_FASTENER_WIDTH, #CONTROL_FASTENER_RIGHT,
#CONTROL_FASTENER_HEIGHT}

" ADD OK BUTTON
theOKScriptString = "theList = {}"+NL
for each aCbxName in theListOfCbxNames
theOKScriptString = theOKScriptString+
"theList.Add(self._GetDialog.FindByName(**+aCbxName.Quote+") .GetCurrentValue)"+NL

59

end
theOKScriptString = theOKScriptString+'self.GetDialog.SetModalResult(theList)"+NL+"self.GetDialog.Close"
theOKScriptName = "temp_cbx_ok"
theOKBaseName = "temp_chbx_ok™
theOKCounter = 0
while(av.FindDoc(theOKScriptName) <> nil)
theOKCounter = theOKCounter+1l
theOKScriptName = theOKBaseName+theOKCounter.AsString
end
theOKSEd = SEd.MakeFromSource(theOKScriptString, theOKScriptName)

theOKButton = LabelButton.Make
theOKButton.SetName(*'cmdOK™)

theOKButton.SetLabel (*'OK'™)

theControlPanel .Add(theOKButton, Rect.Make(344@14, 71@24))
theOKButton.SetFasteners(theButtonFasteners)
theOKButton.SetClick(theOKScriptName)

* ADD CANCEL BUTTON
theCancelScriptString = "self._GetDialog.SetModalResult(nil)"+NL+"self._GetDialog.Close"
theCancelScriptName = "temp_chbx_Cancel"
theCancelBaseName = "temp_cbx_Cancel™*
theCancelCounter = 0
while(av.FindDoc(theCancelScriptName) <> nil)
theCancelCounter = theCancelCounter+1
theCancelScriptName = theCancelBaseName+theCancelCounter.AsString
end
theCancelSEd = SEd.MakeFromSource(theCancelScriptString, theCancelScriptName)
theCancelSEd.Compile

theCancelButton = LabelButton.Make
theCancelButton.SetName(*'cmdCancel™)

theCancelButton.SetLabel (*"Cancel™)
theCancelButton.SetClick(theCancelScriptName)

theControlPanel .Add(theCancelButton, Rect.Make(344@47, 71@24))
theCancelButton.SetFasteners(theButtonFasteners)

" ADD MESSAGE

theMessagelabel = TextLabel .Make

theMessagelLabel .SetName(""IbIMessage'™)

theMessagelLabel .SetLabel (theMessage)

theMessagelabel . SetFasteners({#CONTROL_FASTENER_TOP, #CONTROL_FASTENER_WIDTH, #CONTROL_FASTENER_LEFT,
#CONTROL_FASTENER_HEIGHT})

theControlPanel _.Add(theMessagelLabel, Rect._Make(5@5, 328@45))

theOutput = theDialog.Open
theDialog = nil

av.GetProject.RemoveDoc(theCancel SEd)
av.GetProject.RemoveDoc(theOKSEd)

60

return theOutput

“MultiChoice Sample Code” script:

' Jennessent.SampleMultiChoice_sample_code

' PASTE THE FOLLOWING LINE INTO THE TOP OF YOUR SCRIPT SOMEWHERE BEFORE THE
' MULTI-CHOICE BOX GETS CALLED:
MsgMultiChoice = av.FindScript ("Jennessent.SampleMultiChoice")

THIS MESSAGE BOX REQUIRES 4 PARAMETERS:
0) THE MESSAGE TO SHOW ABOVE THE DROP-DOWN BOXES: MUST BE A STRING

' 1) THE DIALOG TITLE: MUST BE A STRING
' 2) A LIST OF LABELS FOR EACH DROP-DOWN BOX: MUST CONTAIN ALL STRING LABELS
' 3) A LIST OF LISTS, TO FILL THE DROP-DOWN BOXES: THESE LISTS CAN CONTAIN ANY OBJECTS

USE THE FOLLOWING LINE TO OPEN A MULTI-CHOICE BOX AND RETURN A LIST OF SELECTED ITEMS:
theChoices = MsgMultiChoice.DoIt ({theMessage, theTitle, theListOfLabels, theListOfLists})

FOR EXAMPLE, THE FOLLOWING CODE WILL GENERATE A MULTI-CHOICE MESSAGE BOX CONTAINING 6 DROP-DOWN LISTS
AND RETURN THE 6 SELECTED VALUES IN A SINGLE LIST. IT WILL THEN SHOW YOU A LIST OF THE SELECTED VALUES.

theMessage = "This is a sample message:"
theTitle = "This is a sample MultiChoice Title:"
theListOfLabels = {"Arizona", "New Mexico", "California", "Utah", "Colorado", "Nevada"}

theAzList = {5, 10, 15, 20, 25, 30, 35}

theNewMexicoList = theAZList.Clone

theCalifornialist = theAZList.Clone

theUtahList = theAZList.Clone

theColoradoList = theAZList.Clone

theNevadalist = theAZList.Clone

theListOfLists = {theAZList, theNewMexicoList, theCalifornialList, theUtahList,
theColoradoList, theNevadaList}

' GET CHOICES
theChoices = MsgMultiChoice.DoIt ({theMessage, theTitle, theListOfLabels, theListOfLists})
if (theChoices = nil) then return nil end

' MAKE REPORT OF CHOICES

theReport = ""
for each anIndex in 0.. (theListOfLabels.Count-1)

theReport = theReport+theListOfLabels.Get (anIndex)+": Choice = "+theChoices.Get (anIndex) .AsString+NL
end

msgBox.Report (theReport, "Report of Choices:")

Progress Meter Scripts
“Open” script:

Jennessent.SampleProgressMeter_Open

theProject = av.GetProject

icnProgressLine = self.FindByName(*"'icnProgressLine'™)
panelProgressLine = self_FindByName("'panelProgressLine’™)
IbITimeLeft = self._FindByName("'IblTimeLeft")

61

IbICurrentTime = self._FindByName('IbICurrentTime™)
IbIBeginTime = self._FindByName("'lblBeginTime')
IblIndex = self._FindByName(*'lblIndex'™)
IblPercentDone = self_FindByName(*'IblPercentDone'™)
IbIRecordNumber = self.FindByName(**IbIRecordNumber™)

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnkExtent / (2@2))

abDialog = self

halfDialogWidthHeight = aDialog.ReturnExtent.ReturnSize /7 (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
aDialog.-MoveTo(MovePoint.GetX, MovePoint.GetY)

IbICurrentTime.SetLabel (date.now.setFormat(**h:m:s AMPM™). AsStrlng)
IbITimeLeft.SetLabel (“Estimated time remaining: ---:---:I---"")
IblPercentDone.SetLabel ('(00.0%)")

IbIBeginTime.SetLabel (*'---:---"")

IbIRecordNumber .SetLabel (*'----- D)

IblIndex.SetLabel (*"----- ")

self._SetTitle('Current Status...™)
icnProgressLine.ResizeTo(0,13) " START GREEN PROGRESS BAR AT O PIXELS WIDE

“EstTimeLeft script:

* Jennessent.SampleProgressMeter_EstTimelLeft
* ESTIMATED TIME LEFT CODE

BeginTime = self.Get(0)
theRecordNumber = self.Get(l)
theRecordCount = self.Get(2)
theProgressDialog = self.Get(3)
thePDTimeLeft = self.Get(4)

thePDPercentDone = self.Get(5)
thePDProgressBar = self.Get(6)
thePDCurrentTime = self.Get(7)
thePDDescription = self.Get(8)
thePDCurrentStep = self.Get(9)

theCurrentDescription = self.Get(10)

thePDDescription.SetLabel (theCurrentDescription)
thePDCurrentStep.SetLabel ("Working on Step ''+theRecordNumber.AsString+" of '+theRecordCount.AsString+"...")

thePercentDone = (theRecordNumber/theRecordCount)*100

thePDProgressBar .ResizeTo((thePercentDone*2.68), 10) " RESIZES PROGRESS BAR TO FULL SIZE OF 268 PIXELS
thePercentDone.SetFormat (*'dd.d™)

thePDPercentDone.SetLabel ('(*'+thePercentDone.AsString+"%)")

thePDCurrentTime.SetLabel (Date._Now.SetFormat(*'hhh:m:s') _AsString)

theDuration = (Date.Now - BeginTime).AsSeconds

62

PredictedDuration = (theDuration * theRecordCount)/(theRecordNumber+1)
EstTimeLeft = (PredictedDuration-theDuration)+1

EstHoursLeft = (EstTimeLeft/3600).Truncate
EstMinutesLeft = ((EstTimeLeft - (EstHoursLeft*3600))/60).Truncate
EstSecondsLeft = (EstTimeLeft - (EstHoursLeft*3600) - (EstMinutesLeft*60)).Truncate
EstHoursStr = EstHoursLeft.AsString
IT (EstMinutesLeft >= 10) then
EstMinutesStr = EstMinutesLeft._AsString
else
EstMinutesStr = "0"+EstMinutesLeft_AsString
end
IT (EstSecondsLeft >= 10) then
EstSecondsStr = EstSecondsLeft.AsString
else
EstSecondsStr = "0"+EstSecondsLeft.AsString
end

EstTimeLeftStr = EstHoursStr +":"+EstMinutesStr+":"+EstSecondsStr
thePDTimeLeft.SetLabel (“"Estimated time remaining: '"+EstTimelLeftStr)
theProgressDialog.Activate

return nil

“Sample Code™ script:

* Jennessent.SampleProgressMeter_SampleCode

" THE PROGRESS METER CONTAINS 7 CONTROLS THAT YOU CAN MODIFY AS YOUR SCRIPT RUNS:

b thePDBeginTime: A TEXT LABEL INTENDED TO DISPLAY THE TIME THE SCRIPT STARTED

® thePDCurrentTime: A TEXT LABEL INTENDED TO DISPLAY THE CURRENT TIME

* thePDRecordNumber: A TEXT LABEL INTENDED TO DISPLAY THE CURRENT STEP NUMBER, PLUS

b THE TOTAL NUMBER OF STEPS EXPECTED IN THE ANALYSIS
b thePDIndex: A TEXT LABEL INTENDED TO DISPLAY A BRIEF DESCRIPTION OF THE CURRENT TASK
" thePDTimeLeft: A TEXT LABEL INTENDED TO DISPLAY THE ESTIMATED TIME REMAINING

" thePDPercentDone: A TEXT LABEL INTENDED TO DISPLAY NUMERICALLY THE PERCENTAGE DONE
thePDProgressBar: AN ICON INTENDED TO DISPLAY GRAPHICALLY THE AMOUNT DONE

" PASTE THE FOLLOWING CODE INTO THE TOP OF YOUR SCRIPT SOMEWHERE TO IDENTIFY DIALOG CONTROLS
" AND SCRIPTS AND PRESET DIALOG COMPONENTS.

" PROGRESS METER STUFF —————— oo oo
UpdateProgress = av.FindScript(“Jennessent.SampleProgressMeter_EstTimeLeft")
theProgressDialog = av.FindDialog (“'Jennessent.SampleProgressMeter')
thePDBeginTime = theProgressDialog.FindByName("'IbIBeginTime')
thePDCurrentTime = theProgressDialog.FindByName ('IbICurrentTime™)
thePDCurrentStep = theProgressDialog.FindByName(*'IbIRecordNumber'")
thePDDescription = theProgressDialog.FindByName(''IblIndex')

thePDTimeLeft = theProgressDialog.FindByName(*'IbITimeLeft")

thePDPercentDone = theProgressDialog.FindByName(**IblPercentDone™)
thePDProgressBar = theProgressDialog.FindByName(*'icnProgressLine'™)

63

thePDCurrentStep.SetLabel ('Current Record Number or Step...")
thePDPercentDone.SetLabel ('0%)*)
thePDCurrentTime.SetLabel (date.now.setFormat(‘'h:m:s AMPM').AsString)

thelndexLabel = "Description of Current Task..."

thePDDescription.SetLabel (“'Preparing Data...')

thePDTimeLeft.SetLabel (“Estimated time remaining: ---:I---:---"")

thePDProgressBar .ResizeTo(0,13) " START GREEN PROGRESS BAR AT O PIXELS WIDE

* END PROGRESS METER STUFF == -mm oo oo oo mm oo

" PASTE THE FOLLOWING CODE IN AT THE POINT YOU WANT THE PROGRESS DIALOG TO OPEN AND START WORKING:
theProgressDialog.Open

theProgressDialog.Activate

BeginTime = Date.Now.SetFormat(MMMM d, h:m:s AMPM'™)

thePDBeginTime.SetLabel ("'Began Job: '+BeginTime.AsString)

thePDCurrentTime.SetLabel (date.now.setFormat(*'h:m:s AMPM').AsString)

" AT ANY POINT YOU CAN SET ANY OF THE TEXT LABELS BY THE FOLLOWING CODE:

* theTextLabelName.SetLabel (*'your label™)

" TO UPDATE ALL PORTIONS OF THE PROGRESS METER INCLUDING THE ESTIMATED TIME LEFT, YOU NEED TO
" IDENTIFY THE FOLLOWING VARIABLES:

" theStepNumber = THE NUMBER OF THE CURRENT STEP OR CALCULATION. FOR EXAMPLE, IF YOU WERE ON THE

" ATH OF 10 CALCULATIONS, THIS NUMBER WOULD BE 4.
b theStepCount = THE TOTAL NUMBER OF CALCULATIONS. FOR EXAMPLE, IF YOU WERE ON THE 4TH OF 10
b CALCULATIONS, THIS NUMBER WOULD BE 10.

" theDescription = A BRIEF MESSAGE DESCRIBING THE CURRENT CALCULATION.

" THEN PASTE THE FOLLOWING CODE TO UPDATE THE PROGRESS METER. MOST OF THESE LIST ITEMS HAVE
® BEEN IDENTIFIED AT THE BEGINNING OF THE SCRIPT. MAKE SURE TO REMOVE COMMENT TAGS

" UpdateProgress.Dolt({BeginTime, theStepNumber, theStepCount, theProgressDialog,
- thePDTimeLeft, thePDPercentDone, thePDProgressBar, thePDCurrentTime,
b thePDDescription, thePDCurrentStep, theDescription})

" FOR EXAMPLE: ASSUMING YOU HAVE ALREADY PASTED THE INTRODUCTORY CODE ABOVE, THE FOLLOWING SCRIPTS
" ILLUSTRATE HOW THE PROGRESS DIALOG WORKS:

" THIS SCRIPT UPDATES THE PROGRESS DIALOG AT EVERY STEP
theProgressDialog.Open

theProgressDialog.Activate

BeginTime = Date.Now.SetFormat("MMMM d, h:im:s AMPM'™)
thePDBeginTime.SetLabel ("'Began Job: '+BeginTime.AsString)
thePDCurrentTime.SetLabel (date.now.setFormat(*'h:m:s AMPM').AsString)

theTotalCount = 2000
theDescription = "Counting to 2,000"
for each aNumber in O..theTotalCount
UpdateProgress.Dolt({BeginTime, aNumber, theTotalCount, theProgressDialog,
thePDTimeLeft, thePDPercentDone, thePDProgressBar, thePDCurrentTime,
thePDDescription, thePDCurrentStep, theDescription})
end

64

theProgressDialog.Close

® THIS SCRIPT UPDATES THE PROGRESS DIALOG EVERY SECOND
theProgressDialog.Open

theProgressDialog.Activate

BeginTime = Date.Now.SetFormat("MMMM d, h:im:s AMPM'™)
thePDBeginTime.SetLabel ("'Began Job: ''+BeginTime.AsString)
thePDCurrentTime.SetLabel (date.now.setFormat(*'h:m:s AMPM') .AsString)

theTotalCount = 40000
theDescription = "Counting to 40,000"
theTestTime = Date.Now
for each aNumber in O..theTotalCount
it ((Date.Now - theTestTime).AsSeconds >=1) then
UpdateProgress.Dolt({BeginTime, aNumber, theTotalCount, theProgressDialog,
thePDTimeLeft, thePDPercentDone, thePDProgressBar, thePDCurrentTime,
thePDDescription, thePDCurrentStep, theDescription})
theTestTime = Date.Now
end
end
theProgressDialog.Close

Theme and ID Field Scripts:
“Cancel” script:

" Jennessent.SampleThemelD_Cancel

self.GetDialog.SetModalResult(nil)
self._GetDialog.Close

“CheckOK” script:

* Jennessent.SampleThemelD_CheckOK

theDialog = av.FindDialog(*'Jennessent.SampleThemelD™)
cmdOK = theDialog.FindByName(*'cmdOK'™)

IbxField = theDialog.FindByName("'lbxField")

IbxTheme = theDialog.FindByName(*'1bxTheme'™)

cmdOK.SetEnabled(lbxField.HasSelection and lbxTheme.HasSelection)

“Close” script:

* Jennessent.SampleThemelD_Close
Self._SetObjectTag(nil)

Self_FindByName(*'cmdCancel™) .SetObjectTag(nil)
Self_FindByName(*'cmdOK'™) .SetObjectTag(nil)

65

Self_FindByName("'IblSelectField™).SetObjectTag(nil)
Self_FindByName(*'IblSelectTheme™) .SetObjectTag(nil)
Self_FindByName("'lbxField").SetObjectTag(nil)
Self_FindByName("'lbxTheme') .SetObjectTag(nil)

“OK” script:

* Jennessent.SampleThemelD_OK

theDialog = av.FindDialog(‘'Jennessent.SampleThemelD')
IbxField = theDialog.FindByName(*'lbxField™)
IbxTheme = theDialog.FindByName(**l1bxTheme'™)

self.GetDialog.SetModalResult({IbxTheme.GetCurrentValue, IbxField.GetCurrentValue})
self._GetDialog.Close

“Open’” script:
* Jennessent.SampleThemelD_Open

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnExtent / (202))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self_MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = av.FindDialog(‘'Jennessent.SampleThemelD™)
cmdCancel = theDialog.FindByName(**‘cmdCancel')

cmdOK = theDialog.FindByName(*'cmdOK™)

IblSelectField = theDialog.FindByName(*"'IblSelectField™)
IblSelectTheme = theDialog.FindByName(*'IblSelectTheme™)
IbxField = theDialog.FindByName(*'lbxField™)

1bxTheme theDialog.FindByName(*'1bxTheme'™)

theView = av.GetActiveDoc
theThemes = theView.GetThemes
theSelectThemes = {}
for each aTheme in theThemes
if (aTheme.ls(FTheme)) then
if (aTheme.GetFTab.GetShapeClass.GetClassName = *"Polygon') then
theSelectThemes.Add(aTheme)
end
end
end
IbxTheme.DefineFromList(theSelectThemes)
IbxField.Empty
cmdOK . SetEnabled(False)

““Select Theme” script:

66

* Jennessent.SampleThemelD_SelectTheme

theDialog = av.FindDialog(‘'Jennessent.SampleThemelD')
IbxField = theDialog.FindByName(*'lbxField™)

theTheme = Self.GetCurrentValue
if (theTheme.ls(FTheme)) then
theVTab = theTheme.GetFTab
else
theVTab = theTheme.GetVTab
end

theFieldList = {}
for each aField in theVTab.GetFields
ifT (aField.IsTypeShape.Not) then theFieldList.Add(aField) end
end
IbxField.DefineFromList(theFieldList)

av._.Run('Jennessent.SampleThemelD_CheckOK", nil)

“Sample Code” script:

" Jennessent.SampleThemelD_sample code

" THIS IS A SIMPLE EXTENSION TO OPERATE. FIRST IDENTIFY THE DIALOG AND THEN USE THE “OPEN®
" REQUEST TO RUN IT. THE FOLLOWING CODE IDENTIFIES THE DIALOG, OPENS IT, THEN SHOWS YOU
THE SELECTED THEME AND FIELD. THE DEFAULT CODE ASSUMES IT IS BEING RUN FROM A VIEW.

theThemelDDialog = av.FindDialog(''Jennessent.SampleThemelD')

theThemeAndID = theThemelDDialog.Open

if (theThemeAndID = nil) then return nil end

it (theThemeAndID.Get(0) = nil) then return nil end

theTheme = theThemeAndID.Get(0)

thelDField = theThemeAndID.Get(1)

msgBox.List(theThemeAndID, *"Selected Theme and ID Field...", "Dialog Results:")

Report Dialog Scripts:
“Open” script:

" Jennessent.ReportDialog_Open
* Jenness Enterprises <www.jennessent.com>

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnExtent / (202))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self_MoveTo(MovePoint.GetX, MovePoint.GetY)

67

“OK” script:

" Jennessent.ReportDialog_OK
* Jenness Enterprises <www.jennessent.com>

self._GetDialog.Close

“Close” script:

" Jennessent._ReportDialog_Close
" Jenness Enterprises <www.jennessent.com>

Self.SetObjectTag(nil)
Self_FindByName("'cmdOK') .SetObjectTag(nil)
Self_FindByName(""txtReport™).SetObjectTag(nil)
Self._FindByName(*"txtReport') .SetText(*""")

“Copy”’ script:

* Jennessent.ReportDialog_Copy
* Jenness Enterprises <www.jennessent.com>

theText = self.GetDialog.FindByName(""txtReport') .GetText
theClipboard = Clipboard.The

theClipboard.Empty

theClipboard.Add(theText)

theClipboard.Update

“Copy and Close™ script:

* Jennessent.ReportDialog_CopyClose
* Jenness Enterprises <www.jennessent.com>

theText = self.GetDialog.FindByName(""txtReport') .GetText
theClipboard = Clipboard.The

theClipboard.Empty

theClipboard.Add(theText)

theClipboard.Update

self._GetDialog.-Close

“Run Dialog™ script:

* Jennessent.ReportDialog_Run
® Jenness Enterprises <www.jennessent.com>

theText = self.Get(0)
theTitle = self.Get(l)

68

theReportDialog = av.FindDialog(''Jennessent.ReportDialog™)
theReportDialog.SetTitle(theTitle)
txtReport = theReportDialog.FindByName(*"txtReport'™)

txtReport.SetText(theText)
theReportDialog.Open

“Sample Code™ script:

" Jennessent.ReportDialog_Sample_Code
" Jenness Enterprises <www.jennessent.com>

* First identify the script that runs the report dialog:
MakeReport = av.FindScript('Jennessent.ReportDialog_Run')

" Next generate a report and specify a title:
theText = "This is a sample report.”
theTitle = "This is a sample title."”

" Open your report dialog with the "Dolt" request, with the text and

title as the two parameters.

MakeReport.Dolt({theText, theTitle})

List Dialog Scripts:

“Open”” script:
" zzz_Jennessent._SamplelListBoxOpen
* Jenness Enterprises <http://www.jennessent.com>

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnkExtent / (202))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (202)
MovePoint = AVCenter - halfDialogWidthHeight
Self_MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = self
cmdOK = theDialog.FindByName(*'cmdOK'™)
cmdCancel = theDialog.FindByName("'cmdCancel")

“Activate” script:
" zzz_Jennessent.SampleListBoxActivate
" Jenness Enterprises <http://www.jennessent.com>

69

“Cancel” script:
" zzz_Jennessent.SampleListBoxCancel
" Jenness Enterprises <http://www.jennessent.com>

self.GetDialog.SetModalResult(nil)
self._GetDialog.Close

“OK” script:
" zzz_Jennessent._SamplelListBox0OK
® Jenness Enterprises <http://www.jennessent.com>

theDialog = av.FindDialog(''zzz_Jennessent.SampleListBox'")

theDialog.SetModalResult(theDialog.FindByName('lIbxList') _GetSelection)
theDialog.Close

“Sample Code”” script:

zzz_Jennessent.SampleListBox_sample_code
® Jenness Enterprises <www.jennessent.com>
* IF THIS 1S A MODAL DIALOG, YOU CAN USE IT COMPLETELY THROUGH THE zzz_Jennessent.SampleListBox_Run SCRIPT
* AS ILLUSTRATED BELOW. OTHERWISE, LOOK AT zzz_ Jennessent.SampleListBox Run FOR A STRAIGHTFORWARD WAY TO
" PRE-LOAD THE MESSAGE AND LISTBOX. NOTICE THAT YOU CAN INCLUDE OBJECTS OTHER THAN STRINGS AND NUMBERS
RunListDialog = av.FindScript(*'zzz_Jennessent.SampleListBox_Run'™)
theMessage = "This is a sample message to illustrate how to use this dialog. You might want to "+
"explain how to select multiple cells, rows or columns in the listbox below if you have set up "+
"your list that way."
" NOTICE THE LIST CAN HAVE SUB-LISTS
theSymboll = RasterFill_Make
theSymboll.SetColor(Color.GetRed)
theSymbol2 = RasterFill_Make
theSymbol2._SetColor(Color.GetBlue)
theSymbol3 = RasterFill_Make
theSymbol3.SetColor(Color.GetGreen)
thelcon = av.FindGUI("'View') .GetButtonBar .FindByScript("'Project.Save') ._Getlcon.Clone
theList = {{theSymboll,1,2,3},{4,theSymbol2,5}, {6,7,8,9,10},{12,11,theSymbol3,13},{14,15,16, thelcon}}
theTitle = "Sample Title"
theSelection = RunListDialog.Dolt({theMessage, thelList, theTitle})

if (theSelection = nil) then return nil end

70

msgBox. Info(theSelection.Count_AsString+" objects selected. ', "Selection Report:')

“Run’ script:
® zzz_Jennessent.SamplelListBox_Run

" THIS SCRIPT WILL WORK IF THE LIST DIALOG IS A MODAL DIALOG

theText = self.Get(0)

theList = self.Get(1)

theTitle = self.Get(2)

theDialog = av.FindDialog(*'zzz_Jennessent.SampleListBox')
theDialog.FindByName(""txtMessage') . SetText(theText)
theDialog.FindByName(''IbxList') .DefineFromList(theList)
theSelection = theDialog.Open

return theSelection

“OK” script:
Jennessent.SelectProjectionDialog_cmdOKClick

® Jennessent.SelectProjectionDialog_cmdOKClick
® Jenness Enterprises <www.jennessent.com>

* DistanceBylID.ProjectionDLGClose

" Activates when the "0OK" button on the Edges.SelectProjection Dialog is clicked.
® Just turns off the dialog.

theDialog = self.GetDialog

theDialog.Close

Sortable List Scripts:

“Close” script:
Jennessent._AddToListDialog_Close

* Jennessent._AddToListDialog_Close

* Jenness Enterprises <www.jennessent.com>

" Jennessent.SampleAddTolistClose

Self.SetObjectTag(nil)

Self_FindByName(*'cmdAdd') .SetObjectTag(nil)
Self_FindByName(*'cmdCancel™) .SetObjectTag(nil)
Self_FindByName("'cmdOK") .SetObjectTag(nil)
Self_FindByName(*'cmdRemove') .SetObjectTag(nil)
Self.FindByName(*'cmdShiftAl IDown') .SetObjectTag(nil)
Self.FindByName('cmdShiftAllUp') .SetObjectTag(nil)
Self_FindByName("'cmdShiftDown'") .SetObjectTag(nil)

71

Self_FindByName(*'cmdShiftUp') .SetObjectTag(nil)
Self_FindByName("'IbxAll'") .SetObjectTag(nil)
Self_FindByName("'lbxSelected') .SetObjectTag(nil)

“Add Button” script:
Jennessent._AddToListDialog_cmdAddClick

® Jennessent._AddToListDialog_cmdAddClick

* Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddTolistAdd

theDialog = av.FindDialog(''Jennessent.AddToListDialog"™)
cmdCancel = theDialog.FindByName(*'cmdCancel'™)

IbxAll = theDialog.FindByName("'l1bxAll")

IbxSelected = theDialog.FindByName(*'IbxSelected™)

theAddList = IbxAll._GetSelection
theList = lbxSelected.GetList

for each aNewObject in theAddList
FoundObject = False
for each anExistingObject in thelList
if (anExistingObject = aNewObject) then
FoundObject = True
break
end
end
if (FoundObject.Not) then theList.Add(aNewObject) end
end

" IbxSelected.DefineFromList(theList+theAddList)
IbxSelected.DefineFromList(theList)

IbxAll _SetSelection(Rect.MakeNull, False)
1bxAl 1l _ShowCurrent

av.Run(''Jennessent.AddToListDialog_ShuffleArrowUpdate', nil)

““Cancel Button™ script:
Jennessent.AddToListDialog_cmdCancelClick

® Jennessent._AddToListDialog_cmdCancelClick
* Jenness Enterprises <www.jennessent.com>

" Jennessent.SampleAddTol istCancel

self._GetDialog.SetModalResult(nil)
self._GetDialog-Close

“OK Button” script:
Jennessent.AddToListDialog_cmdOKClick

® Jennessent.AddToListDialog_cmdOKClick

® Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddTol istOK

theDialog = av.FindDialog(''Jennessent.AddToListDialog')
IbxSelected = theDialog.FindByName(*'IbxSelected™)

theDialog.SetModalResult(IbxSelected.GetList)
theDialog.Close

“Remove Button” script:
Jennessent.AddToListDialog_cmdRemoveClick

* Jennessent._AddToListDialog_cmdRemoveClick
* Jenness Enterprises <www.jennessent.com>

" Jennessent.SampleAddToListRemove

theDialog = av.FindDialog(*'Jennessent.AddToListDialog™™)
cmdCancel = theDialog.FindByName(*'cmdCancel")
IbxSelected = theDialog.FindByName(*'IbxSelected™)

theList = lbxSelected.GetList
theCurrentRow = lbxSelected.GetCurrentRow

theList.Remove(theCurrentRow)
IbxSelected.DefineFromList(thelList)

av.Run(""Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

““Shuffle to Bottom Button™ script:
Jennessent.AddToListDialog_cmdShiftAl IDownClick

* Jennessent.AddToListDialog_cmdShiftAlIDownClick
® Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddToListShuffleDownAll

theDialog = av.FindDialog(''Jennessent.AddToListDialog"™)
cmdCancel = theDialog.FindByName(''cmdCancel')

cmdOK = theDialog.FindByName(*'cmdOK™™)

cmdShiftAllDown = theDialog.FindByName(**cmdShiftAllDown™)
cmdShiftAllUp = theDialog.FindByName(*'cmdShiftAllUp™)
cmdShiftDown = theDialog.FindByName(*'cmdShiftDown')

73

cmdShiftUp = theDialog.FindByName(*‘cmdShiftUp™)
IbxSelected = theDialog.FindByName(*'IbxSelected™)

theList = lbxSelected.GetList

theCount = thelList.Count-1

theCurrentvValue = IbxSelected.GetCurrentValue
theCurrentRow = lIbxSelected.GetCurrentRow

theList.Shuffle(theList.Get(theCurrentRow), theCount+l)

IbxSelected.DefineFromList(thelList)
IbxSelected.GoRow(theCount)
IbxSelected.SelectCurrent(False)
IbxSelected.ShowCurrent

av.Run('Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

““Shuffle to Top Button™ script:
Jennessent._AddToListDialog_cmdShiftAllUpClick

® Jennessent.AddToListDialog_cmdShiftAllUpClick
* Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddToListShuffleUpAll

theDialog = av.FindDialog(''Jennessent.AddToListDialog"™)
cmdCancel = theDialog.FindByName(*'cmdCancel'™)

cmdOK = theDialog.FindByName(*'cmdOK™™)

cmdShiftAllDown = theDialog.FindByName(**'cmdShiftAllDown™)
cmdShiftAllUp = theDialog.FindByName(*'cmdShiftAllUp™)
cmdShiftDown = theDialog.FindByName(*"'cmdShiftDown')
cmdShiftUp = theDialog.FindByName(*‘cmdShiftUp™)
IbxSelected = theDialog.FindByName(*'lbxSelected™)

theList = lbxSelected.GetList

theCurrentValue = IbxSelected.GetCurrentValue
theCurrentRow = lbxSelected.GetCurrentRow
theList.Shuffle(theList.Get(theCurrentRow), 0)

IbxSelected.DefineFromList(theList)
IbxSelected.GoRow(0)
IbxSelected.SelectCurrent(False)
IbxSelected.ShowCurrent

av.Run(**Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

““Shuffle Down Button™ script:
Jennessent._AddToListDialog_cmdShiftDownClick
* Jennessent.AddToListDialog_cmdShiftDownClick

* Jenness Enterprises <www.jennessent.com>
" Jennessent.SampleAddToListShuffleDown

theDialog = av.FindDialog(*'Jennessent.AddToListDialog™™)
cmdCancel = theDialog.FindByName(*'‘cmdCancel™)

cmdOK = theDialog.FindByName("'cmdOK")

cmdShiftAllDown = theDialog.FindByName(**'cmdShiftAllDown™)
cmdShiftAllUp = theDialog.FindByName(**cmdShiftAllUp™)
cmdShiftDown = theDialog.FindByName(*'cmdShiftDown')
cmdShiftUp = theDialog.FindByName(''cmdShiftUp™)
IbxSelected = theDialog.FindByName(*'IbxSelected™)

theList = lbxSelected.GetList
theCurrentValue = IbxSelected.GetCurrentValue
theCurrentRow = lIbxSelected.GetCurrentRow

theList.Shuffle(theList.Get(theCurrentRow), theCurrentRow +2)

IbxSelected.DefineFromList(theList)
IbxSelected.GoRow(theCurrentRow+1)
IbxSelected.SelectCurrent(False)
IbxSelected.ShowCurrent

av.Run(*"Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

“Shuffle Up Button” script:
Jennessent._AddToListDialog_cmdShiftUpClick

* Jennessent.AddToListDialog_cmdShiftUpClick
® Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddToListShuffleUp

theDialog = av.FindDialog(‘'Jennessent.AddToListDialog')
cmdCancel = theDialog.FindByName(*'cmdCancel')

cmdOK = theDialog.FindByName(*'cmdOK™™)

cmdShiftAllDown = theDialog.FindByName(*'cmdShiftAllDown™)
cmdShiftAllUp = theDialog.FindByName(*'cmdShiftAllUp™)
cmdShiftDown = theDialog.FindByName(*"'cmdShiftDown')
cmdShiftUp = theDialog.FindByName('cmdShiftUp™)
IbxSelected = theDialog.FindByName(*'lbxSelected™)

theList = lbxSelected.GetList
theCurrentValue = IbxSelected.GetCurrentValue
theCurrentRow = lbxSelected.GetCurrentRow

theList.Shuffle(theList.Get(theCurrentRow), theCurrentRow - 1)

IbxSelected.DefineFromList(theList)
IbxSelected.GoRow(theCurrentRow-1)

75

IbxSelected.SelectCurrent(False)
IbxSelected.ShowCurrent

av.Run("Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

“Listbox Apply”” script:
Jennessent._AddToListDialog_lbxAllApply

* Jennessent.AddToListDialog_lbxAllApply

® Jenness Enterprises <www.jennessent.com>

® Jennessent.SampleAddTol istAdd

theDialog = av.FindDialog(‘'Jennessent.AddToListDialog')
cmdCancel = theDialog.FindByName(*'cmdCancel'™)

1bxAll = theDialog.FindByName("'IbxAIl')

IbxSelected = theDialog.FindByName(*'IbxSelected™)

theAddList = IbxAll._GetSelection
theList = lbxSelected.GetList

for each aNewObject in theAddList
FoundObject = False
for each anExistingObject in thelList
iT (anExistingObject = aNewObject) then
FoundObject = True
break
end
end
if (FoundObject.Not) then theList.Add(aNewObject) end
end

" IbxSelected.DefineFromList(theList+theAddList)
IbxSelected.DefineFromList(theList)

IbxAll _.SetSelection(Rect.MakeNull, False)
1bxAll _ShowCurrent

av.Run(''Jennessent.AddToListDialog_ShuffleArrowUpdate', nil)

“Listbox Select™ script:
Jennessent._AddToListDialog_lbxAllSelect

® Jennessent.AddToListDialog_lbxAllSelect
* Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddToListSelFromAll

theDialog = av.FindDialog(‘'Jennessent.AddToListDialog")

cmdAdd = theDialog.FindByName(**'cmdAdd™)

cmdRemove = theDialog.FindByName(*'‘cmdRemove')
IbxAll = theDialog.FindByName("'l1bxAll")
IbxSelected = theDialog.FindByName(*'IbxSelected™)

cmdAdd.SetEnabled(1bxAll _.HasSelection)
cmdRemove.SetEnabled(lbxSelected.HasSelection)

“Listbox (Selected) Select™ script:
Jennessent._AddToListDialog_lbxSelectedSelect

* Jennessent.AddToListDialog_lbxSelectedSelect
® Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddTolistSelFromSel

theDialog = av.FindDialog(''Jennessent.AddToListDialog"™)
cmdAdd = theDialog.FindByName(*'cmdAdd™)

cmdRemove = theDialog.FindByName(*'cmdRemove')

1bxAll = theDialog.FindByName('IbxAll'")

IbxSelected = theDialog.FindByName(*'IbxSelected™)

cmdAdd.SetEnabled(1bxAll _.HasSelection)
cmdRemove . SetEnabled(lbxSelected.HasSelection)

av.Run('Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

“Dialog Open’ script:
Jennessent._AddToListDialog_Open

® Jennessent.AddToListDialog_Open

* Jenness Enterprises <www.jennessent.com>

* Jennessent.SampleAddTol istOpen

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnExtent / (202))
halfDialogWidthHeight = Self.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
Self.MoveTo(MovePoint.GetX, MovePoint.GetY)

theDialog = self

cmdOK = theDialog.FindByName(*'cmdOK™™)

cmdCancel = theDialog.FindByName(**'cmdCancel')
IbxAll = theDialog.FindByName("'l1bxAll')

cmdAdd = theDialog.FindByName(*'cmdAdd™)

cmdRemove = theDialog.FindByName(*'‘cmdRemove')
IbxSelected = theDialog.FindByName(*'lbxSelected™)

theList = theDialog.GetObjectTag
1bxAll .DefineFromList(theList)

cmdAdd.SetEnabled(False)
cmdRemove.SetEnabled(False)
IbxSelected.Empty

av.Run("Jennessent._AddToListDialog_ShuffleArrowUpdate', nil)

“Sample Code”” script:
Jennessent.AddToListDialog_SampleCode

" Jennessent.AddToListDialog_SampleCode

® Jenness Enterprises <www.jennessent.com>

theDialog = av.FindDialog(*'Jennessent.AddToListDialog™™)
theList = {1,2,3,4,5,6,7,8,9,0}

theDialog.SetObjectTag(thelist)
theOutput = theDialog.Open
if (theOutput = nil) then return nil end

msgBox.ListAsString(theOutput, theOutput.Count.AsString+" objects chosen...

“Shuffle Update™ script:
Jennessent._AddToListDialog_ShuffleArrowUpdate

® Jennessent.AddToListDialog_ShuffleArrowUpdate
* Jenness Enterprises <www.jennessent.com>

" Jennessent._AddToListDialog_ShuffleArrowUpdate

theDialog = av.FindDialog(‘'Jennessent.AddToListDialog')
cmdCancel theDialog.FindByName(‘‘cmdCancel'")

cmdOK = theDialog.FindByName(*'cmdOK™™)

cmdShiftAllDown = theDialog.FindByName(**'cmdShiftAllDown™)
cmdShiftAllUp = theDialog.FindByName(*'cmdShiftAllUp™)
cmdShiftDown = theDialog.FindByName(*'cmdShiftDown')
cmdShiftUp = theDialog.FindByName(*‘cmdShiftUp™)
IbxSelected = theDialog.FindByName(*'lIbxSelected™)

theRow = lbxSelected.GetCurrentRow
theCount = IbxSelected.GetList.Count-1

NotAtEnd
NotAtBeg

(theRow
(theRow

theCount) .Not
0) -Not

ShouldEnable = IbxSelected.HasSelection
cmdShiftAllDown.SetEnabled(ShouldEnable and NotAtEnd)
cmdShiftAllUp.SetEnabled(ShouldEnable and NotAtBeg)

78

, "Test™)

cmdShiftDown.SetEnabled(ShouldEnable and NotAtEnd)
cmdShiftUp.SetEnabled(ShouldEnable and NotAtBeg)

cmdOK . SetEnabled(lbxSelected.GetList.Count > 0)

Select Projection Scripts:

“Close” script:
Jennessent.SelectProjectionDialog_Close

* Jennessent.SelectProjectionDialog_Close
® Jenness Enterprises <www.jennessent.com>

® Jennessent.SelectProjectionDialogClose

Self._SetObjectTag(nil)

Self_FindByName("'cmdOK") .SetObjectTag(nil)
Self_FindByName("'IblProjection'™)_SetObjectTag(nil)
Self_FindByName(*'IbIResultsProjection™).SetObjectTag(nil)
Self_FindByName(*'optGeoCurve'™) .SetObjectTag(nil)
Self_FindByName("'optProjection').SetObjectTag(nil)
Self_FindByName("'optUnprojected').SetObjectTag(nil)

“Cancel” script:
Jennessent.SelectProjectionDialog_cmdCancelClick

® Jennessent.SelectProjectionDialog_cmdCancelClick
® Jenness Enterprises <www.jennessent.com>

* Jennessent.SelectProjectionDialog_Cancel

self.GetDialog.SetModalResult(nil)
self._GetDialog.Close

“OK” script:
Jennessent.SelectProjectionDialog_cmdOKClick

® Jennessent.SelectProjectionDialog_cmdOKClick
® Jenness Enterprises <www.jennessent.com>

® Jennessent.SelectProjectionDialog_cmdOKClick
* Jenness Enterprises <www.jennessent.com>

® Just turns off the dialog.
theDialog = self.GetDialog

theDialog.Close

79

“Open’” script:
Jennessent.SelectProjectionDialog_Open

* Jennessent.SelectProjectionDialog_Open

® Jenness Enterprises <www.jennessent.com>

® Jennessent.SelectProjectionDialog_Open
* Jenness Enterprises <www.jennessent.com>

theProject = av.GetProject
theView = av.GetActiveDoc

AVUpperLeft = av.ReturnOrigin

AVCenter = avUpperLeft + (av.ReturnExtent / (202))

aDialog = self

halfDialogWidthHeight = aDialog.ReturnExtent.ReturnSize / (2@2)
MovePoint = AVCenter - halfDialogWidthHeight
aDialog.MoveTo(MovePoint.GetX, MovePoint.GetY)

" Output Data will be either TRUE or FALSE depending on whether the user wants the output
" data to be in Projected (TRUE) or Geographic (FALSE) coordinates. TRUE is the default.

theProjectionName = aDialog.GetObjectTag.AsString

optProjection = aDialog.FindByName (‘'‘optProjection')

optProjection.Select

optProjection.SetLabel (theProjectionName + ' Projection™)

IbIProjection = aDialog.FindByName ("'lblProjection™)

IbIText = "Your original data are unprojected, but your View has been™ + NL +
“projected into the " + theProjectionName + " projection."™ + NL + " "™ + NL +
Do you wish to calculate your RESULTS data based on this " + NL +
"projection? If your themes are both Point themes, you may'+NL+
"calculate Great Circle distances (most accurate).™

IbIProjection.Setlabel (IblText)

optGeoCurve = aDialog.FindByName(*'optGeoCurve'™)
optGeoCurve.SetEnabled(optGeoCurve.GetObjectTag = True)

aDialog.SetModalResult(TRUE)

cmdOK = aDialog.FindByName (*'cmdOK™)
aDialog.SetDefaul tButton (cmdOK)

“Select Great Circle” script:
Jennessent.SelectProjectionDialog_optGeoCurveClick

80

Jennessent.SelectProjectionDialog_optGeoCurveClick
Jenness Enterprises <www.jennessent.com>

Jennessent.SelectProjectionDialog_optGreatCircleClick
Jenness Enterprises <www.jennessent.com>

Runs when the Great Circle option is selected on the
DistanceBylID.SelectProjection dialog box is clicked.
the Modal Result to TRUE, meaning the user wants the
" results data projected.

aDialog = Self.GetDialog
aDialog.SetModalResult(*'Great Circle™)

“Select Projected”” script:
Jennessent.SelectProjectionDialog_optProjectionClick

* Jennessent.SelectProjectionDialog_optProjectionClick
® Jenness Enterprises <www.jennessent.com>

Jennessent.SelectProjectionDialog_optProjectionClick
Jenness Enterprises <www.jennessent.com>

" Runs when the PROJECTED option is selected on the
DistanceBylID.SelectProjection dialog box is clicked.
* the Modal Result to TRUE, meaning the user wants the
" results data projected.

aDialog = Self.GetDialog
aDialog.SetModalResul t(TRUE)

““Select Unprojected”™ script:
Jennessent.SelectProjectionDialog_optUnprojectedClick

* Jennessent.SelectProjectionDialog_optUnprojectedClick
® Jenness Enterprises <www.jennessent.com>

" Jennessent.SelectProjectionDialog_optUnprojectedClick
Jenness Enterprises <www.jennessent.com>

* Runs when the PROJECTED option is selected on the

" DistanceBylID.SelectProjection dialog box is clicked.
" the Modal Result to FALSE, meaning the user wants the
results data unprojected.

aDialog = Self.GetDialog
aDialog.SetModalResult(FALSE)

“Sample Code” script:

Sets

Sets

Sets

81

Jennessent.SelectProjectionDialog_SampleCode
* Jennessent.SelectProjectionDialog_SampleCode
® Jenness Enterprises <www.jennessent.com>

theSelPrjDialog = av.FindDialog(*'Jennessent.SelectProjectionDialog™)
IncludeGreatCircle = True " SET TO FALSE TO DISABLE GREAT CIRCLE OPTION
theSelPrjDialog.FindByName("'optGeoCurve') .SetObjectTag(IncludeGreatCircle)
ShouldProject = theSelPrjDialog.-Open * TRUE, FALSE OR "GREAT CIRCLE"

msgBox. Info(ShouldProject._AsString, ")

Create VTab and FTab scripts:
“Create VTab” script:

" CREATE TABLE: 1 CHECK FOR OPERATING SYSTEM BECAUSE THE FILE DIALOG BOX IN
" WINDOWS WORKS BETTER WHEN USING THE "\" SYMBOL RATHER THAN THE "/® SYMBOL
" IN THIS OPERATION.

if (theOS = #SYSTEM_OS_MSW) then
tempFileString = "\results.dbf"
else
tempFileString = "/results.dbf"
end
tempFileName = FileName._Make(theWorkDirStr+tempFileString)
tempFNCounter = 1

" SUGGEST FILE NAME AND DIRECTORY, BUT NOT ONE THAT ALREADY EXISTS

While (File.Exists(tempFileName))
tempFNCounter = tempFNCounter + 1
if (theOS = #SYSTEM_OS_MSW) then
tempFileString = "\results'+tempFNCounter _AsString+".dbf"
else
tempFileString = "/results'+tempFNCounter .AsString+".dbf""
end
tempFileName = FileName._Make(theWorkDirStr+tempFileString)
if (File.Exists(tempFileName).Not) then
break
end
end

theFilename = FileDialog.Put(tempFilename, "*.dbf", "Please specify a name for your table:™)

if (theFilename = nil) then
msgBox.info ("'"No Table created: Exiting routine...", "Problem:")

82

return nil
end

theFilename.SetExtension(*'dbf'")

theNewTable = VTab.MakeNew (theFilename, dBASE)
thelDField = Field.Make("ID", #FIELD_LONG, 6, 0)
theNewTable_AddFields({thelDField})

“Create FTab” script:

" CREATE FTAB: 1 CHECK FOR OPERATING SYSTEM BECAUSE THE FILE DIALOG BOX IN
" WINDOWS WORKS BETTER WHEN USING THE "\" SYMBOL RATHER THAN THE "/® SYMBOL
" IN THIS OPERATION.

ifT (theOS = #SYSTEM_OS_MSW) then
tempFileString = '"\random_points.shp"
else
tempFileString = "/random_points.shp"
end
tempFileName = FileName._Make(theWorkDirStr+tempFileString)
tempFNCounter = 1

" SUGGEST FILE NAME AND DIRECTORY, BUT NOT ONE THAT ALREADY EXISTS

While (File.Exists(tempFileName))
tempFNCounter = tempFNCounter + 1
if (theOS = #SYSTEM_OS_MSW) then
tempFileString = "\random_points'+tempFNCounter _AsString+".shp"
else
tempFileString = "/random_points'+tempFNCounter .AsString+".shp"
end
tempFileName = FileName._Make(theWorkDirStr+tempFileString)
if (File.Exists(tempFileName).Not) then
break
end
end

theFilename = FileDialog.Put(tempFilename, "*.shp", "Please specify a name for your shapefile:")

if (theFilename = nil) then
msgBox.info ("'No Shapefile created: Exiting routine...", "Problem:")
return nil

end

theFilename.SetExtension(*'shp™)

theNewPointFTab = FTab.MakeNew (theFilename, Point)
theNewPointShapeField = theNewPointFTab.FindField(*'Shape'™)

83

thelDField = Field.Make(*"ID", #FIELD_LONG, 6, 0)
theNewPointFTab.AddFields({thelDField})

Generate Random Number scripts:

Generate Random Numbers:

Jennessent.MakeRandomNum

Jenness Enterprises <www.jennessent.com)>

Adapted from code suggested by Bill Huber [Quantitative Decisions <whuber@quantdec.com]
Given a range and a precision, this scripts returns a random number within that range

* with the specified number of decimal places.

theMin = self.Get(0)
theMax = self.Get(1)
thePrecision = self.Get(2)

theExponent = 10”~thePrecision
nBig = 2730 * FROM BILL HUBER - Determines granularity, but cannot be larger than 2731 - 1

theRandom = Number.MakeRandom(O, nBig)/nBig * (theMax - theMin) + theMin
Return ((theRandom * theExponent).Round)/theExponent

Generate Random Numbers Sample Code:

* CougarRandom.MakeRandomNum_sample
* Jenness Enterprises <www.jennessent.com)>

" To generate a random integer between 1 and 100, first identify the randomize script and
" run it as follows:

Jennessent = av.FindScript(*'CougarRandom.MakeRandomNum™)

theMin = 1

theMax = 100

thePrecision = 0

theRandomNumber = CalcRandom.Dolt({theMin, theMax, thePrecision})

msgBox. Info(*'RandomNumber = *'+theRandomNumber.SetFormatPrecision(thePrecision).AsString, "Random Number Generation Successful:')

Generate Normally-Distributed Random Number scripts:

Generate Normally Distributed Random Numbers:

* Jennessent.MakeNormRandomNum
* Jenness Enterprises <www.jennessent.com)>
" Randomization Code Adapted from code suggested by Bill Huber [Quantitative Decisions <whuber@quantdec.com]

84

" Given a mean and standard deviation, this script returns two random numbers within that distribution.
" Based on the Box-Muller Transformation:.

- yl = sqgrt(- 2 In(x1)) cos(2 pi x2)

- y2 = sqgrt(- 2 In(x1)) sin(2 pi x2)

- where

- x1 = first uniform random number (between 0 and 1)
- x2 = second uniform random number (between 0 and 1)
b yl = Ffirst normally distributed random number

- y2 = second normally distributed random number.

theMean = self.Get(0)

theSD = self.Get(1)

thePi = Number.GetPi

nBig = 2730 * FROM BILL HUBER - Determines granularity, but cannot be larger than 2731 - 1

theRandNuml
theRandNum2

= (Number .MakeRandom(0, nBig)/nBig)
= (Number.MakeRandom(0, nBig)/nBig)
theNorml
theNorm2

(theSD*(((-2)*(theRandNuml. In)) .sqrt)*((2*thePi*theRandNum2) .Cos))+theMean
(theSD*(((-2)*(theRandNuml. In)) .sqrt)*((2*thePi*theRandNum2) .Sin))+theMean

return {theNorml, theNorm2}

Generate Normally Distributed Random Numbers Sample Code:

* Jennessent.MakeNormRandomNum_sample
* Jenness Enterprises <www.jennessent.com)>

" To generate a random integer between 1 and 100, first identify the randomize script and
" run it as follows:

CalcNormRandom = av.FindScript(*Jennessent._MakeNormRandomNum'™)
theMean = 100

theSD = 10

theRandomNumbers = CalcNormRandom.Dolt({theMean, theSD})

msgBox.ListAsString(theRandomNumbers, "Two Random Numbers:*+NL+
“Normal Distribution: Mean = 100, SD = 10", "Random Number Generation Successful:")

Generate ‘Insert Commas in Number’ scripts:

Insert Commas in Number:

" Jennessent. InsertCommas
® Jenness Enterprises <www.jennessent.com)>
" Takes a string version of a number and inserts commas into it.

85

theAreaString = self.Get(0)
thePrecision = self.Get(1)

if (theAreaString.Is(Number)) then

theAreaString = theAreaString.Clone.SetFormatPrecision(thePrecision)._AsString
else

theAreaString = theAreaString.AsNumber.SetFormatPrecision(thePrecision).AsString
end

theTokens = theAreaString.AsTokens('.')
theBaseNumber = theTokens.Get(0)
theCount = theBaseNumber.Count
theCommaString = """

if (theCount > 3) then
for each anlndex in (theCount-3)..0 by -3
theCommaString = theBaseNumber_Middle(anlndex, 3)+","+theCommaString
if (anlndex < 3) then theCommaString = theBaseNumber.Left(anlndex)+","+theCommaString end

end

theCommaString = theCommaString.BasicTrim(",",",")
else

theCommaString = theBaseNumber
end

if (theTokens.Count > 1) then
theCommaString = theCommaString+"."+theTokens.Get(1)
end

if (theCommaString.Contains(*'.')) then
theCommaString = theCommaString.BasicTrim("", "0"™)
theCommaString = theCommaString.BasicTrim(''", ".')
end

return theCommaString

Insert Commas in Number Sample Code:

saguaro. InsertCommas_sample
* Jenness Enterprises <www.jennessent.com)>

® To insert commas into the number 123456789.123, first identify the script and
" run it as follows:

AddCommas = av.FindScript(‘'saguaro.InsertCommas"™)
theNumAsString = ''123456789.123"
theNumWithCommas = AddCommas.Dolt(theNumAsString)

msgBox. Info(*'Original Number = "+theNumAsString+NL+"the Number with commas = "+theNumWithCommas, "Comma Insertion Successful:")

86

Make Measurement Unit Dictionaries script:

Make measurement unit dictionaries:

* Jennessent.MakeMeasureUnits
® Jenness Enterprises <www.jennessent.com>

theUnitsDictionary

theUnitsDictionary.
theUnitsDictionary.
theUnitsDictionary.
theUnitsDictionary.
theUnitsDictionary. |
-Set(#UNITS_LINEAR_MILLIMETERS, “"Millimeters')

theUnitsDictionary

theUnitsDictionary.
theUnitsDictionary.
theUnitsDictionary.
theUnitsDictionary.
theUnitsDictionary.

theNamesDictionary

= Dictionary.Make(11)
Set(#UNITS_LINEAR_UNKNOWN, *‘Unknown')
Set(#UNITS_LINEAR_INCHES, '"Inches')
Set(#UNITS_LINEAR_FEET, "US Survey Feet')
Set(#UNITS_LINEAR_YARDS, "Yards')
Set(#UNITS_LINEAR_MILES, "Miles')

Set(#UNITS_LINEAR_CENTIMETERS, 'Centimeters')
Set(#UNITS_LINEAR_METERS, ''Meters')
Set(#UNITS_LINEAR_KILOMETERS, "Kilometers')
Set(#UNITS_LINEAR_NAUTICALMILES, '"Nautical miles')
Set(#UNITS_LINEAR_DEGREES, 'Decimal degrees'™)

= Dictionary.Make(11)

for each aKey in theUnitsDictionary.ReturnKeys
theNamesDictionary.Set(theUnitsDictionary.Get(aKey), aKey)

end

return {theUnitsDictionary, theNamesDictionary}

Geometric Function scripts:

Sort points according to X or Y value:

" xxxCalcSortByXorY
“Jenness Enterprises <www.jennessent.com>

theList = Self

theList.RemoveDuplicates

av.ShowMsg(''Sorting points...")

theXList = {3}

for each aPoint in

thelList

theXList.Add(aPoint.GetX)

end

theXList.RemoveDuplicates

theXList._Sort(True)

87

" ADD X-VALUES TO DICTIONARY AS KEYS
theCounter = 0
theCount = thelList.Count

theDictionary = Dictionary.Make(theXList.Count)

for each anX in theXList
theCounter = theCounter+1
av.SetStatus((theCounter/theCount)*100)
theDictionary.Set(anX, {})

end

" ADD POINTS TO DICTIONARY AS ELEMENTS
theCounter = 0
theCount = theList.Count

for each aPoint in thelList
theCounter = theCounter+l
av.SetStatus((theCounter/theCount)*100)
theShortList = theDictionary.Get(aPoint.GetX)
theShortList.Add(aPoint)
" SHUFFLE POINT TO APPROPRIATE PLACE IN LIST (SORTED LOW TO HIGH)
thelndex = theShortList.Count-1
while ((thelndex > 0) and (theShortList.Get(thelndex).GetY < theShortList.Get(thelndex-1).GetY))
theShortList.Shuffle(aPoint, thelndex-1)
thelndex = thelndex -1
end
end

return {theXList, theDictionary}

Sort points according to bearing from a point:

* Jennessent.GeometrySortClockwise
® Jenness Enterprises <www.jennessent.com>

PointA = self.Get(0)
theList = self.Get(1)

theList.RemoveDuplicates

av.ShowMsg(*'Sorting points...")

theXList = {}

theDictionary = Dictionary.Make(theList.Count)

theCounter = 0
theCount = thelList.Count

88

for each PointB in theList
theCounter = theCounter+1
av.SetStatus((theCounter/theCount)*100)

if (PointA <> PointB) then

xdist = (PointA.GetX - PointB.GetX)
ydist = (PointA_GetY - PointB.GetY)

xyTanDeg = (xdist/ydist).Atan.AsDegrees

if (ydist >= 0) then
theBearing = 180 + xytandeg
else
if (xdist <= 0) then
theBearing = xytandeg
else
theBearing = 360+xytandeg
end
end " END CALCULATING BEARING

theBearing = theBearing.Abs
theBearing = ((theBearing*1000).Round)/1000

theShortList = theDictionary.Get(theBearing)

if (theShortList = nil) then
theXList_Add(theBearing)
theDictionary.Set(theBearing, {PointB})
else

theShortList.Add(PointB)

® SHUFFLE POINT TO APPROPRIATE PLACE IN LIST (SORTED LOW TO HIGH)

thelndex = theShortList.Count-1

while ((thelndex > 0) and (theShortList.Get(thelndex) .Distance(PointA) < theShortList.Get(thelndex-1)._Distance(PointA)))
theShortList.Shuffle(PointB, thelndex-1)
thelndex = thelndex -1

end

end
end
end

theXList._Sort(True)
" LOOK FOR LARGEST GAP

thelLowBearing = theXList.Get(0)
theHighBearing = theXList.Get(theXList.Count-1)

theMaxGap = 360 - (theHighBearing - thelLowBearing)
theMaxGaplndex = 0

89

for each anlndex in O..(theXList.Count-2)
theTestGap = theXList.Get(anlndex+1l) - theXList.Get(anlndex)
if (theTestGap > theMaxGap) then
theMaxGapIndex = anlndex+1
theMaxGap = theTestGap
end
end

if (theMaxGaplndex <> 0) then
theNewXList = {}
for each anlndex in theMaxGaplndex..(theXList.Count-1)
theNewXList_Add(theXList.Get(anlndex))
end
for each anlndex in O..(theMaxGaplndex-1)
theNewXList.Add(theXList.Get(anlndex))
end
else
theNewXList = theXList
end

theLowEnd = theNewXList.Get(0)
theHighEnd = theNewXList.Get(theNewXList.Count-1)

if (theHighEnd > thelLowEnd) then

theRange = theHighEnd - thelLowEnd
else

theRange = (theHighEnd+360) - thelLowEnd
end

return {theNewXList, theDictionary, theRange}

““Calculate Bearing” script:

Sample.CalcBearing

* Jenness Enterprises <www.jennessent.com>

" Given 2 consecutive points, this scripts the bearing of the line extending from the first
" point to the second point.

PointA
PointB

= self.Get(0)

= self.Get(1)

" FOR DEBUGGING

“"PointA = Point.Make(14.19, 5)
"PointB = Point.Make(9.9, 10)

xdist = (PointA._GetX - PointB.GetX)
ydist = (PointA.GetY - PointB.GetY)
xyTanDeg = (xdist/ydist).Atan.AsDegrees

if (ydist >= 0) then
theBearing = 180 + xytandeg

90

else
if (xdist <= 0) then
theBearing = xytandeg
else
theBearing = 360+xytandeg
end
end " END CALCULATING BEARING

theBearing = theBearing.Abs

" FOR DEBUGGING
"msgBox.Report(*'Bearing = "+theBearing.AsString+NL+"X-dist = "+(-xDist).AsString
" +NL+"Y-dist = "+(-ydist).AsString+NL+"ArcTan = "+xyTanDeg.AsString, ')

return theBearing

“Check Clockwise™ script:

Sample.CalcCheckClockwise

Jenness Enterprises <www.jennessent.com)>

Given 3 consecutive points, this scripts calculates whether the third point lies to the right
" (clockwise) or to the left (counter-clockwise) of the line connecting the first point to

" the second point.

thePX = self.Get(0).GetX
thePY = self.Get(0).GetY
theQX = self.Get(1).GetX
theQY = self.Get(1).GetY
theRX = self.Get(2).GetX
theRY = self.Get(2).GetY

" CLOCKWISE IF TRUE
return ((theQX * (theRY - thePY)) + (theQY * (thePX - theRX)) - ((thePX)*(theRY)) + ((thePY)*(theRX)) < 0)

“Find Closest Points™ script:

Jennessent.GeometryFindClosestPoints

* Jennessent.GeometryFindClosestPoints

" Jenness Enterprises (Www.jennessent.com)

" Given two shapes, this script return the line connecting the closest points on each shape.

thelnputShape = self.Get(0)
CompShape = self._Get(l)

InputisMultipoint = (thelnputShape.ls(Multipoint)) and (thelnputShape.ls(Polyline).Not) and (thelnputShape.ls(Polygon).Not) and
(thelnputShape. Is(Rect) .Not)

ComplsMultipoint = (CompShape.lIs(Multipoint)) and (CompShape.lIs(Polyline).Not) and (CompShape.ls(Polygon).Not) and
(CompShape. Is(Rect) .Not)

91

" INITIAL CHECK TO SEE IF SHAPES INTERSECT

if (thelnputShape.Distance(CompShape) = 0) then
thelntLine = Line.MakeNull

else

" CALCULATE MAXIMUM POSSIBLE DISTANCE TO SERVE AS STARTING POINT; THIS IS THE LENGTH
" OF THE DIAGONAL EXTENDING ACROSS THE EXTENT OF ALL THEMES USED IN THE ANALYSIS

theFullExtent = (thelnputShape.ReturnExtent.UnionWith(CompShape.ReturnExtent)).Scale(1.1)
theLongestLength = theFulllExtent.ReturnLength
theCompMinDistance = thelLongestlLength

" IF THE INPUT THEME ISN"T A POINT, GET A LIST OF THE LINES THAT MAKE UP THE SHAPE
if (thelnputShape.Is(point)._Not) then

thePointX
thePointY

thelnputShape.ReturnCenter.GetX
thelnputShape.ReturnCenter.GetY

InputShapeLines = {}

if (InputlsMultipoint) then
thelnputPointList = thelnputShape.AsList
else

o START: MODIFED ON NOVEMBER 10, 2000 === === == mm oo mm oo

thelnputPolyline
thePolyLineCount

thelnputShape.AsPolyline
thelnputPolyLine.CountParts

if (thePolyLineCount = 1) then " IF IT"S A SIMPLE POLYGON OR A SINGLE-PART POLYLINE
thelnputPointList = thelnputShape.AsPolyline_AsMultiPoint_AsList
for each thelnputPointindex in O..(thelnputPointList.Count -2)
thelnputPointA = thelnputPointList.Get(thelnputPointlndex)
thelnputPointB = thelnputPointList.Get(thelnputPointlndex+1)
thelnputLineSegment = Line.Make (thelnputPointA, thelnputPointB)
InputShapeLines._Add (thelnputLineSegment)
end
else " IF IT"S A COMPLEX (MULTIPART OR HAS HOLES) POLYGON OR MULTIPART POLYLINE
thelnputPolyLineList = thelnputPolyLine.AsList
for each thelnputLinePointsList in thelnputPolyLinelList
for each thelnputPointindex in O..(thelnputLinePointsList.Count -2)
thelnputPointA = thelnputLinePointsList.Get(thelnputPointlindex)
thelnputPointB = thelnputLinePointsList.Get(thelnputPointlndex+1)
thelnputLineSegment = Line.Make (thelnputPointA, thelnputPointB)
InputShapelLines.Add (thelnputLineSegment)

end
end " END WORKING THROUGH SEPARATE LINES IN POLYLINE
end " END CHECKING TO SEE IF IT"S A COMPLEX POLYGON OR MULTIPART POLYLINE
S END: MODIFED ON NOVEMBER 10, 2000 —-————— = m oo oo

92

end

end " END IDENTIFYING INPUT SHAPE

iT (CompShape.ls(Point).Not) then

IF THE COMPARISON THEME IS A POLYGON, POLYLINE OR LINE, CREATE A LIST OF LINES THAT MAKE UP THE SHAPE

if (ComplsMultipoint) then
theCompPointList = CompShape.AsList
else
CompShapeLines = {}

---------------------- START: MODIFED ON NOVEMBER 10, 2000 === === mm oo oo oo oo

theComparePolyline = CompShape.AsPolyline
theComparePolyLineCount = theComparePolyLine.CountParts

if (theComparePolyLineCount = 1) then " IF IT"S A SIMPLE POLYGON OR A SINGLE-PART POLYLINE

thePointList = CompShape.AsPolyLine._AsMultiPoint._AsList

for each thePointlndex in O..(thePointList.Count -2)
theCompPointA = thePointList.Get(thePointlndex)
theCompPointB = thePointList.Get(thePointindex+1)
theCompLineSegment = Line.Make (theCompPointA, theCompPointB)
CompShapelLines.Add (theCompLineSegment)

end

else " IF IT"S A COMPLEX (MULTIPART OR HAS HOLES) POLYGON OR MULTIPART POLYLINE
theComparePolyLineList = theComparePolyLine.AsList

for each thePointList in theComparePolyLinelList

for each thePointlndex in O..(thePointList.Count -2)
theCompPointA = thePointList.Get(thePointlndex)
theCompPointB = thePointList.Get(thePointlndex+1)
theCompLineSegment = Line.Make (theCompPointA, theCompPointB)
CompShapelLines.Add (theCompLineSegment)

end
end " END WORKING THROUGH SEPARATE LINES IN POLYLINE
end ® END CHECKING TO SEE IF IT"S A COMPLEX POLYGON OR MULTIPART POLYLINE
Y END: MODIFED ON NOVEMBER 10, 2000 —————————— e
end
end " END IDENTIFYING COMPARISON SHAPE

" IDENTIFY CLOSEST SEGMENTS OF INPUT AND COMPARISON SHAPES
if (CompShape.ls(Point).Not) then

if (ComplsMultipoint.Not) then

93

for each theCompLineTest in CompShapelLines

IF THE INPUT SHAPE <IS NOT> A POINT, THEN COMPARE EACH OF THE LINES IN THE COMPARISON SHAPE WITH
THE RESULT WILL BE THE TWO LINES FROM THE TWO SHAPES THAT

" EACH OF THE LINES IN THE INPUT SHAPE.
® ARE CLOSEST TO EACH OTHER.

if (thelnputShape.ls(Point)._Not) then
for each thelnputLineTest in InputShapeLines
theCompDistance = theCompLineTest.Distance(thelnputLineTest)
if (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
theCompLine = theCompLineTest
thelnputLine = thelnputLineTest

end " NOW THE SCRIPT KNOWS WHICH LINES ARE CLOSEST TO EACH OTHER.

end " END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE

else

® IF THE INPUT SHAPE <IS> A POINT: RESULT WILL BE A LINE FROM THE COMPARISON SHAPE AND A POINT FROM

* THE INPUT SHAPE
thelnputLine = Line.MakeNull
theCompDistance = theCompLineTest.Distance(thelnputShape)

if (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
theCompLine = theCompLineTest

® END ASSIGNING VARIABLES BASED ON CLOSEST LINE
" END CHECKING IF INPUT SHAPE IS A POINT OR NOT
" END WORKING THROUGH ALL THE LINES IN THE COMPARISON SHAPE

end
end
end
else
for each theCompPointTest in theCompPointLIst
" IF THE INPUT SHAPE <IS NOT> A POINT, THEN COMPARE ALL OF THE POINTS IN THE COMPARISON SHAPE WITH
" EACH OF THE LINES IN THE INPUT SHAPE. THE RESULT WILL BE THE POINT FROM THE MULTIPOINT AND A LINE

* FROM THE INPUT SHAPE THAT ARE CLOSEST TO EACH OTHER.

if (thelnputShape.Is(Point)_Not) then
if (InputlsMultipoint_Not) then
for each thelnputLineTest in InputShapeLines
theCompDistance = theCompPointTest.Distance(thelnputLineTest)

if (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
CompShape = theCompPointTest
thelnputLine = thelnputLineTest

end ® NOW THE SCRIPT KNOWS WHICH SHAPES ARE CLOSEST TO EACH OTHER.

94

end * END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE

else
for each thelnputPointTest in thelnputPointList

theCompDistance = theCompPointTest.Distance(thelnputPointTest)

if (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
CompShape = theCompPointTest
thelnputShape = thelnputPointTest

end

end
end

else
" IF THE INPUT SHAPE <IS> A POINT: RESULT WILL BE A POINT FROM THE COMPARISON SHAPE AND A POINT FROM
" THE INPUT SHAPE

thelnputLine = Line.MakeNull

theCompDistance = theCompPointTest.Distance(thelnputShape)

if (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
CompShape = theCompPointTest

" END ASSIGNING VARIABLES BASED ON CLOSEST LINE

end
end " END CHECKING IF INPUT SHAPE 1S A POINT OR NOT
end " END WORKING THROUGH ALL THE LINES IN THE COMPARISON SHAPE
end
else * IF THE COMPARISON SHAPE IS A POINT AND THE INPUT SHAPE 1S NOT

theCompLine = Line_MakeNull
if (thelnputShape.Is(Point)._Not) then
if (InputlsMultipoint.Not) then

for each thelnputLineTest in InputShapelLines

theCompDistance = thelnputLineTest.Distance(CompShape)

it (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
thelnputLine = thelnputLineTest

® END ASSIGNING VARIABLES BASED ON CLOSEST LINE. NOW THE SCRIPT KNOWS WHICH LINES

" ARE CLOSEST TO EACH OTHER.
" END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE

end

end

else
for each thelnputPointTest in thelnputPointList

theCompDistance = thelnputPointTest.Distance(CompShape)

if (theCompMinDistance > theCompDistance) then
theCompMinDistance = theCompDistance
thelnputShape = thelnputPointTest

95

end " END ASSIGNING VARIABLES BASED ON CLOSEST LINE. NOW THE SCRIPT KNOWS WHICH LINES
" ARE CLOSEST TO EACH OTHER.

end " END WORKING THROUGH ALL THE LINES IN THE INPUT SHAPE
end
end * END CHECKING SHAPE TYPE OF INPUT SHAPE.
end " END CALCULATING CLOSEST EDGE POINTS AND LINES. LAST OPTION 1S THAT THEY ARE BOTH

" POINTS, AND CALCULATIONS ARE EASY FOR THAT CASE.
" IDENTIFY START/END POINTS OF CLOSEST INPUT AND COMPARISON SEGMENTS

if (thelnputShape.Is(Point)_Not) then
thelnputPointOne = thelnputLine.ReturnStart
thelnputPointTwo = thelnputLine.ReturnEnd

end

if (CompShape.ls(Point).Not) then
theCompPointOne = theCompLine.ReturnStart
theCompPointTwo = theCompLine.ReturnEnd

end

® CALCULATE THE SLOPE AND Y-INTERCEPT OF THAT CLOSEST LINE (LINE A), THEN THE SLOPE AND Y-INTERCEPT OF THE LINE
" PERPENDICULAR TO [LINE A] THAT PASSES THROUGH THE INPUT POINT (LINE B). THEN SEE IF [LINE B] INTERSECTS

* [LINE A] BETWEEN THE TWO ENDPOINTS OF [LINE A]. IF IT DOES, THEN THE INTERSECTION OF [LINE A] AND [LINE B]

* IS THE CLOSEST POINT BETWEEN THE FEATURES. IF IT DOESN®"T, THEN ONE OF THE TWO ENDPOINTS OF [LINE A] 1S THE

® CLOSEST POINT.

" NEED TO DO THIS BASED ON ONE OF FOUR SITUATIONS:

® 1) INPUT SHAPE = POINT COMPARISON SHAPE <> POINT
® 2) INPUT SHAPE <> POINT COMPARISON SHAPE <> POINT
® 3) INPUT SHAPE <> POINT COMPARISON SHAPE = POINT
" 4) INPUT SHAPE = POINT COMPARISON SHAPE = POINT

if ((thelnputShape.ls(Point)) AND (CompShape.ls(Point).Not)) then

theX1l = theCompPointOne.GetX "POINT ONE ON THE CLOSEST LINE SEGMENT
theYl = theCompPointOne.GetY "POINT ONE ON THE CLOSEST LINE SEGMENT
theX2 = theCompPointTwo.GetX "POINT TWO ON THE CLOSEST LINE SEGMENT
theY2 = theCompPointTwo.GetY "POINT TWO ON THE CLOSEST LINE SEGMENT
theX3 = thelnputShape.GetX “INPUT POINT
theY3 = thelnputShape.GetY " INPUT POINT

theSlope = ((theYl - theY2)/(theXl - theX2))
thelnvSlope = (-1/theSlope)

LineOnelntercept = (-1*(theSlope * theX1l)) + theYl
Linelnvintercept = (-1*(thelnvSlope * thex3)) + theY3

thelntX = (((LineOnelntercept/thelnvSlope) - (Linelnvintercept/thelnvSlope)) / (1 - (theSlope/thelnvSlope)))
thelntY = (theSlope*thelntX) + LineOnelntercept

" SPECIAL CASE: IF SLOPE IS PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON®T WORK.

96

it (theSlope.lIsInfinity) then " SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
thelntY = theY3
thelntPoint = Point.Make (theX1l, thelntY)

elseif (theSlope=0) then " SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
thelntX = theX3
thelntPoint = Point.Make (thelntX, theYl)

else
thelntPoint = Point.make (thelntX, thelntY)

end " END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

if (thelntPoint. Intersects (theCompLine)) then
thelntLine = Line_Make (thelnputShape, thelntPoint)

elself (thelnputShape.Distance (theCompPointOne) <= thelnputShape.Distance (theCompPointTwo)) then
thelntLine = Line.Make (thelnputShape, theCompPointOne)

elself (thelnputShape.Distance (theCompPointOne) > thelnputShape.Distance (theCompPointTwo)) then
thelntLine = Line_Make (thelnputShape, theCompPointTwo)

end

elseif ((thelnputShape.ls(Point).Not) AND (CompShape.ls(Point)_Not)) then

® WORKING WITH TWO LINES NOW, THE LINES FROM THE INPUT SHAPE AND THE COMPARISON SHAPE THAT WERE CLOSEST.

theX1l = theCompPointOne.GetX "POINT ONE ON THE CLOSEST LINE SEGMENT
theYl = theCompPointOne.GetY “"POINT ONE ON THE CLOSEST LINE SEGMENT
theX2 = theCompPointTwo.GetX "POINT TWO ON THE CLOSEST LINE SEGMENT
theY2 = theCompPointTwo.GetY "POINT TWO ON THE CLOSEST LINE SEGMENT
theX3 = thelnputPointOne.GetX "POINT ONE ON THE INPUT LINE SEGMENT
theY3 = thelnputPointOne.GetY “"POINT ONE ON THE INPUT LINE SEGMENT
theX4 = thelnputPointTwo.GetX “"POINT TWO ON THE INPUT LINE SEGMENT
theY4 = thelnputPointTwo.GetY "POINT TWO ON THE INPUT LINE SEGMENT

® CALCULATE SLOPES AND INVERSE SLOPES FOR BOTH LINES

theCompSlope = ((theYl - theY2)/(theXl - theX2))
thelnvCompSlope = (-1/theCompSlope)

thelnputSlope = ((theY3 - theY4)/(theX3 - theX4))
thelnputinvSlope = (-1/thelnputSlope)

" CALCULATE Y-INTERCEPTS FOR BOTH LINES, THEN RUN THE SLOPES THROUGH BOTH POINTS ON THE OPPOSING LINE AND
" CALCULATE Y-INTERCEPTS FOR BOTH OF THOSE LINES. NOW HAVE TWO ORIGINAL LINES AND 4 POTENTIAL INTERSECTION LINES

LineOnelntercept = (-1*(theCompSlope * theXl)) + theYl
Linelnvinterceptl = (-1*(thelnvCompSlope * theX3)) + theY3
Linelnvintercept2 = (-1*(thelnvCompSlope * theX4)) + theY4
Linelnputintercept = (-1*(thelnputSlope * theX3)) + theY3
Linelnputinvinterceptl = (-1*(thelnputinvSlope * theX1l)) + theYl
Linelnputlnvintercept2 (-1*(thelnputinvSlope * theX2)) + theY2

" CALCULATE THE FOUR POINTS AT WHICH THE FOUR INTERSECTION LINES CROSS THE OPPOSITE LINE.

97

" COMPARISON LINE CROSSING THE FIRST INPUT INTERSECTION LINE
thelntXl = (((LineOnelntercept/thelnvCompSlope) - (Linelnvinterceptl/thelnvCompSlope)) /7 (1 - (theCompSlope/thelnvCompSlope)))
thelntYl = (theCompSlope*thelntXl) + LineOnelntercept

* COMPARISON LINE CROSSING THE SECOND INPUT INTERSECTION LINE
thelntX2 = (((LineOnelntercept/thelnvCompSlope) - (Linelnvintercept2/thelnvCompSlope)) /7 (1 - (theCompSlope/thelnvCompSlope)))
thelntY2 = (theCompSlope*thelntX2) + LineOnelntercept

® INPUT LINE CROSSING THE FIRST COMPARISON INTERSECTION LINE

thelntX3 = (((Linelnputlintercept/thelnputinvSlope) - (Linelnputlnvinterceptl/thelnputinvSlope)) /7 (1 -
(thelnputSlope/thelnputinvSlope)))

thelntY3 = (thelnputSlope*thelntX3) + Linelnputlntercept

® INPUT LINE CROSSING THE SECOND COMPARISON INTERSECTION LINE

thelntX4 = (((Linelnputintercept/thelnputinvSlope) - (Linelnputlnvintercept2/thelnputinvSlope)) /7 (1 -
(thelnputSlope/thelnputinvSlope)))

thelntY4 = (thelnputSlope*thelntX4) + Linelnputintercept

" SPECIAL CASE: IF COMPARISON SLOPE 1S PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON"T WORK.

it (theCompSlope.Isinfinity) then " SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
thelntYl = theY3
thelntY2 = theY4
thelntXl = theX1l
thelntX2 = theX2
elseif (theCompSlope=0) then " SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
thelntX1l = theX3
thelntX2 = theXx4
thelntYl = theYl
thelntY2 = theY2
end " END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

" SPECIAL CASE: IF INPUT SLOPE 1S PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON"T WORK.

it (thelnputSlope.lsinfinity) then " SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
thelntY3 = theYl
thelntY4 = theY2
thelntX3 = theX3
thelntX4 = thex4
elseif (thelnputSlope=0) then " SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
thelntX3 = theX1l
thelntX4 = thex2
thelntY3 = theY3
thelntY4 = theY4
end " END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

thelntPointl
thelntPoint2
thelntPoint3

Point.make (thelntXl, thelntYl)
Point.make (thelntX2, thelntY2)
Point.make (thelntX3, thelntY3)

98

thelntPoint4 = Point.make (thelntX4, thelntY4)

" NOW MAKE LINES CONNECTING THE FOUR ORIGINAL POINTS WITH THE CLOSEST POINT ON THE OPPOSITE FEATURE (THE CLOSEST
® POINT WILL EITHER BE ONE OF THE OTHER ORIGINAL POINTS OR ONE OF THE NEW INTERSECT POINTS). EACH POINT HAS TO
® CHECK THE DISTANCE BETWEEN 3 FEATURES: THE OPPOSING 2 POINTS AND THE INTERCEPT POINT.

if (thelntPointl. Intersects (theCompLine)) then
thelntLinel = Line.Make (thelnputPointOne, thelntPointl)

elself (thelnputPointOne.Distance (theCompPointOne) <= thelnputPointOne.Distance (theCompPointTwo)) then
thelntLinel = Line.Make (thelnputPointOne, theCompPointOne)

elself (thelnputPointOne.Distance (theCompPointOne) > thelnputPointOne.Distance (theCompPointTwo)) then
thelntLinel = Line.Make (thelnputPointOne, theCompPointTwo)

end

if (thelntPoint2.Intersects (theCompLine)) then
thelntLine2 = Line.Make (thelnputPointTwo, thelntPoint2)

elself (thelnputPointTwo.Distance (theCompPointOne) <= thelnputPointTwo.Distance (theCompPointTwo)) then
thelntLine2 = Line.Make (thelnputPointTwo, theCompPointOne)

elself (thelnputPointTwo.Distance (theCompPointOne) > thelnputPointTwo.Distance (theCompPointTwo)) then
thelntLine2 = Line.Make (thelnputPointTwo, theCompPointTwo)

end

if (thelntPoint3.Intersects (thelnputLine)) then
thelntLine3 = Line.Make (thelntPoint3, theCompPointOne)

elself (theCompPointOne.Distance (thelnputPointOne) <= theCompPointOne.Distance (thelnputPointTwo)) then
thelntLine3 = Line.Make (thelnputPointOne, theCompPointOne)

elself (theCompPointOne.Distance (thelnputPointOne) > theCompPointOne.Distance (thelnputPointTwo)) then
thelntLine3 = Line.Make (thelnputPointTwo, theCompPointOne)

end

if (thelntPoint4.Intersects (thelnputLine)) then
thelntLine4 = Line.Make (thelntPoint4, theCompPointTwo)

elself (theCompPointTwo.Distance (thelnputPointOne) <= theCompPointTwo.Distance (thelnputPointTwo)) then
thelntLine4 = Line.Make (thelnputPointOne, theCompPointTwo)

elself (theCompPointTwo.Distance (thelnputPointOne) > theCompPointTwo.Distance (thelnputPointTwo)) then
thelntLine4 = Line.Make (thelnputPointTwo, theCompPointTwo)

end

" FIND THE SHORTEST OF THE FOUR LINES

thelntLine = Line_Make ((theFullExtent.GetLeft)@(theFullExtent.GetBottom), (theFullExtent.GetRight)@(theFullExtent.GetTop))
for each IntLineTest in {thelntLinel, thelntLine2, thelntLine3, thelntLine4}
if (IntLineTest.ReturnLength < thelntLine.ReturnLength) then
thelntLine = IntLineTest
end
end

elseif ((thelnputShape.ls(Point).Not) AND (CompShape.ls(Point))) then

thex1
theYl

CompShape .GetX “COMPARISON POINT
CompShape .GetY "COMPARISON POINT

99

theX2 thelnputPointOne.GetX “POINT ONE ON THE INPUT LINE SEGMENT

theY2 = thelnputPointOne.GetY “POINT ONE ON THE INPUT LINE SEGMENT
theX3 = thelnputPointTwo.GetX “POINT TWO ON THE INPUT LINE SEGMENT
theY3 = thelnputPointTwo.GetY “POINT TWO ON THE INPUT LINE SEGMENT

theSlope = ((theY2 - theY3)/(theX2 - theX3))
thelnvSlope = (-1/theSlope)

LineOnelntercept = (-1*(theSlope * theX2)) + theY2
Linelnvintercept = (-1*(thelnvSlope * theX1l)) + theYl

thelntX
thelntY

(((LineOnelntercept/thelnvSlope) - (Linelnvintercept/thelnvSlope)) /7 (1 - (theSlope/thelnvSlope)))
(theSlope*thelntX) + LineOnelntercept

" SPECIAL CASE: IF SLOPE IS PERFECTLY HORIZONTAL OR PERFECTLY VERTICAL, ABOVE CALCULATIONS DON®T WORK.

if (theSlope.lIsInfinity) then " SLOPE PERFECTLY VERTICAL, INVERSE SLOPE HORIZONTAL
thelntY = theYl
thelntPoint = Point.Make (theX2, thelntY)

elseif (theSlope=0) then " SLOPE PERFECTLY HORIZONTAL, INVERSE SLOPE VERTICAL
thelntX = theX1l
thelntPoint = Point.Make (thelntX, theY2)

else
thelntPoint = Point.make (thelntX, thelntY)

end " END SPECIAL CASE FOR VERTICAL AND HORIZONTAL SLOPES

if (thelntPoint.Intersects (thelnputLine)) then
thelntLine = Line_Make (thelntPoint, CompShape)

elself (CompShape.Distance (thelnputPointOne) <= CompShape.Distance (thelnputPointTwo)) then
thelntLine = Line.Make (thelnputPointOne, CompShape)

elself (CompShape.Distance (thelnputPointOne) > CompShape.Distance (thelnputPointTwo)) then
thelntLine = Line_Make (thelnputPointTwo, CompShape)

end

elseif ((thelnputShape.Ils(Point)) AND (CompShape.ls(Point))) then
ThelntLine = Line._Make(thelnputShape, CompShape)

end " CALCULATING CLOSEST POINTS AND CONNECTING LINES BASED ON FOUR SITUATIONS
end " END CHECKING TO SEE IF TWO SHAPES INTERSECT

return thelntLine

“Make Point and Line” script:

* Sample.CalcPointLine

® Jenness Enterprises <www.jennessent.com>

" Given an origin point, distance and bearing, this script will return a new point at that distance and bearing, and a line
" connecting that new point to the origin point

100

theOrigin = self._Get(0)
thelLength = self.Get(l)
theAzimuth = self.Get(2)

* MAKE SURE AZIMUTH 1S BETWEEN O AND 360
while (theAzimuth < 0)
theAzimuth = theAzimuth+360
end
theAzimuth = theAzimuth._Mod(360)

* NEW SEGMENT AND POINT DISTANCE NORTH/SOUTH AND EAST/WEST BASED ON DISTANCE AND BEARING FROM ORIGIN.

" THERE ARE EIGHT DIFFERENT POSSIBILITIES: THE BEARING COULD BE ONE OF THE FOUR CARDINAL DIRECTIONS OR IT

" COULD BE IN ONE OF THE FOUR QUADRANTS. THE BEARING IS TREATED DIFFERENTLY IN EACH OF THESE CIRCUMSTANCES.
® THE CALCULATION TO DETERMINE THE NEW POINT LOCATION IS ESSENTIALLY A MATTER OF TAKING THE SINE OR THE

" COSINE OF THE ANGLE (AFTER CONVERTING IT TO RADIANS), AND MULTIPLYING THAT SINE OR COSINE BY THE MEASURED
" DISTANCE. PLEASE CONTACT THE AUTHOR IF THIS DOESN®"T MAKE SENSE, OR IF YOU WOULD LIKE FURTHER EXPLANATION.

ifT ((theAzimuth = 0) or (theAzimuth = 360)) then
NorthSouthDistance = thelLength
NorthSouth = 1
EastWestDistance
EastWest = 1
elseif (theAzimuth = 180) then
NorthSouthDistance = thelLength
NorthSouth = -1
EastWestDistance = 0
EastWest = 1
elseif (theAzimuth = 90) then
NorthSouthDistance = 0O
NorthSouth = 1
EastWestDistance = thelLength
EastWest = 1
elseif (theAzimuth = 270) then
NorthSouthDistance = 0
NorthSouth = 1
EastWestDistance = thelLength
EastWest = -1
elseif ((theAzimuth > 0) and (theAzimuth < 90)) then
NorthSouthDistance = ((theAzimuth.AsRadians.Cos)*thelLength)
NorthSouth = 1
EastWestDistance = ((theAzimuth._AsRadians.Sin)*theLength)
EastWest = 1
elseif ((theAzimuth > 90) and (theAzimuth < 180)) then
NorthSouthDistance = (((theAzimuth - 90).AsRadians.Sin)*thelLength)
NorthSouth = -1
EastWestDistance = (((theAzimuth - 90).AsRadians.Cos)*thelLength)
EastWest = 1
elseif ((theAzimuth > 180) and (theAzimuth < 270)) then
NorthSouthDistance = (((theAzimuth - 180).AsRadians.Cos)*theLength)
NorthSouth = -1
EastWestDistance = (((theAzimuth - 180).AsRadians.Sin)*thelLength)

0

101

EastWest = -1
elseif ((theAzimuth > 270) and (theAzimuth < 360)) then

NorthSouthDistance = (((theAzimuth - 270).AsRadians.Sin)*thelLength)

NorthSouth = 1

EastWestDistance = (((theAzimuth - 270).AsRadians.Cos)*thelLength)

EastWest = -1
else

msgBox. Info ("'Problem: "+theAzimuth_AsString+" doesn®"t lie within 0-360 degrees!", "Problem:')
end

theMovementNorth = NorthSouthDistance*NorthSouth
theMovementWest = EastWestDistance*EastWest

theEndPoint = Point.Make (theOrigin.GetX + theMovementWest, theOrigin.GetY + theMovementNorth)
thePolyline = PolyLine.Make({{theOrigin, theEndPoint}})

return {theEndPoint, thePolyline}

“Triangle Area from Points™ script:

* Sample.CalcTrianglePoints

® Jenness Enterprises <www.jennessent.com)>

" Given 3 points, this scripts calculates the area of the triangle defined
" by those points.

thePX = self.Get(0).GetX
thePY = self.Get(0).GetY
theQX = self.Get(1).GetX

theQY = self.Get(1).GetY
theRX = self.Get(2).GetX
theRY = self.Get(2).GetY

theArea = ((((theQX - thePX)*(theRY - thePY)) - ((theRX - thePX)*(theQY - thePY)))/2).abs

return theArea

“Triangle Area from 3D Points™ script:
* Sample.CalcTriangle3DPoints

Jenness Enterprises <www.jennessent.com)>

" Given 3 three-dimensional points, this scripts calculates the area of the triangle defined
by those points.

thePX = self.Get(0).GetX

102

thePY = self.Get(0).GetY

thePZ = self.Get(0).GetZ

theQX = self.Get(1).GetX

theQY = self.Get(1).GetY

theQz = self.Get(1).GetZz

theRX = self.Get(2).GetX

theRY = self.Get(2).GetY

theRZ = self.Get(2).Getz

thePQVec = {theQX - thePX, theQY - thePY, theQZ - thePZ}

thePRVec = {theRX - thePX, theRY - thePY, theRZ - thePZ}

thel (((theQY - thePY)*(theRZ - thePZ)) - ((theRY - thePY)*(theQZ - thePZ)))"2

thed
thekK

theArea = ((thel + theJ + theK).Sqrt)/2

return theArea

“Triangle Area from Sides™ script:

* Sample.CalcTriangleSides
® Jenness Enterprises <www.jennessent.com)>

(((theQx - thePX)*(theRZ - thePz)) - ((theRX - thePX)*(theQZ - thePz)))"2
(((theQX - thePX)*(theRY - thePY)) - ((theRX - thePX)*(theQY - thePY)))"2

" Given 3 triangle side lengths, this scripts calculates the area of the triangle defined
" by those sides. Returns "Number Null™ if not a true triangle

sideA = self.Get(0)
sideB = self.Get(1)
sideC = self.Get(2)

theS = (sideA + sideB + sideC)/2

theArea = (theS * (theS - sideA) * (theS - sideB) * (theS - sideC)).sqrt

return theArea

“Generate Center of Mass and Area™ script:

* Sample.CalcCenterOfMass
Jenness Enterprises <www.jennessent.com)>

® LOOSELY ADAPTED FROM ALGORITHMS IN JOSEPH O®"ROURKE (1998):
b CAMBRIDGE UNIVERSITY PRESS. P. 21

COMPUTATIONAL GEOMETRY IN C, 2ND EDITION,

103

if (self.IsNull) then
return {Point.MakeNull, Number.MakeNull}
else

theESRICentroid = self.ReturnCenter
thePolygonList = self.Explode

theAreas = {}
theCenters = {}
for each aPoly in thePolygonList
theVertices = aPoly.AsMultipoint.AsList
for each anlndex in O..(theVertices.Count-2)
theP = theVertices.Get(anlndex)
theQ = theVertices.Get(anlndex+1)
theCentX = theESRICentroid.GetX
theCentY = theESRICentroid.GetY

theArea = -((((theQ.GetX - theP.GetX)*(theCentY - theP.GetY)) -
((theCentX - theP.GetX)*(theQ.GetY - theP.GetY)))/2)
theCenter = (theP + theQ + theESRICentroid)/(3@3)

theAreas.Add(theArea)
theCenters._Add(theCenter)
end
end

theCount = theAreas.Count

theArea = 0
theCentroid = 0@0

for each anlndex in O..(theCount-1)

theSubArea = theAreas.Get(anlndex)

theArea = theAreat+theSubArea

theCentroid = theCentroid+(theCenters.Get(anlndex) * (theSubArea@theSubArea))
end

theCentroid = theCentroid / (theArea@theArea)
return {theCentroid, theArea}

end

“Calculate Internal Angle” script:

* Sample.CalclnternalAngle

® Jenness Enterprises <www.jennessent.com>

" Given 3 consecutive points, this scripts calculates how many degrees the bearing of the second segment
* deviates from the bearing of the First segment.

104

PointA = self.Get(0)
PointB = self.Get(1)
PointC = self.Get(2)

" FOR DEBUGGING
"PointA = Point.Make(4.9, 5)

"PointB = Point.Make(10, 10)

"PointC = Point.Make(5, 5)

"PointA = Point.Make(449400, 3704000)
"PointB = Point.Make(449550, 3704150)
"PointC = Point.Make(450000, 3704600)
"PointC = Point.Make(449400, 3704000)

" INTERNAL ANGLE WITH LAW OF COSINES;

- cN2 = a2 + b2 - (2ab * Cos C), OR

- Cos C = (a2 +b"2 - c”2)/(2ab)

lenA = Line.Make(PointA, PointB).returnLength
lenB = Line._Make(PointC, PointB).returnLength
lenC = Line.Make(PointC, PointA).returnLength

InternalAngle = (((IenA”2) + (1enB”2) - (IenC”2))/(2*1enA*lenB)).ACos.AsDegrees
theAngleDeviation = 180-InternalAngle

* IF EITHER IS NULL, CHECK ANGLES INDIVIDUALLY
if ((InternalAngle.IsNull) or (theAngleDeviation.IsNull)) then
GetBearing = av.FindScript(“'Sample.CalcBearing'™)
theFirstAngle = GetBearing.Dolt({PointA, PointB})
theSecondAngle = GetBearing.Dolt({PointB, PointC})
if (theFirstAngle = theSecondAngle) then
InternalAngle = 180
theAngleDeviation = 0
else
InternalAngle = 0
theAngleDeviation = 180
end
end

"msgBox. Info(InternalAngle.AsString +" Internal”+NL+theAngleDeviation.AsString+" Deviation™, ')

return {InternalAngle, theAngleDeviation}

“Generate Convex Hull” script:
" Sample.CalcConvexHull

theList = Self

105

CheckClockwise = av.FindScript(*'CalcCheckClockwise™)
av.ShowMsg(''Sorting points...")
theList.RemoveDuplicates

theXList = {}

for each aPoint in thelList
theXList.Add(aPoint.GetX)

end

theXList._RemoveDuplicates
theXList._Sort(True)

" ADD X-VALUES TO DICTIONARY AS KEYS
theCounter = 0
theCount = thelList.Count

theDictionary = Dictionary.Make(theXList.Count)

for each anX in theXList
theCounter = theCounter+1
av.SetStatus((theCounter/theCount)*100)
theDictionary.Set(anX, {})

end

" ADD POINTS TO DICTIONARY AS ELEMENTS
theCounter = 0
theCount = thelList.Count

for each aPoint in thelList
theCounter = theCounter+1l
av.SetStatus((theCounter/theCount)*100)
theShortList = theDictionary.Get(aPoint.GetX)
theShortList.Add(aPoint)

" SHUFFLE POINT TO APPROPRIATE PLACE IN LIST (SORTED LOW TO HIGH)
thelndex = theShortList.Count-1
while ((thelndex > 0) and (theShortList.Get(thelndex).GetY < theShortList.Get(thelndex-1).GetY))
theShortList.Shuffle(aPoint, thelndex-1)
thelndex = thelndex -1
end
end

" CHECK FOR SUFFICIENT NUMBER OF POINTS
theCount = 0

CountOK = False

theShowList = {}

for each aPoint in theXList

theCheckList = {}
theTestList = theDictionary.Get(aPoint).DeepClone

106

for each aPoint in theTestList
theCheckList.Add(aPoint.GetY)

end

theCheckList.RemoveDuplicates

theCount = theCount+theCheckList.Count

if (theCount >= 3) then
CountOK = True
break

end

end

if ((CountOK) AND (theXList.Count = 1)) then
return "All points have same X-coordinate"
end

if (CountOK) then

" UPPER HULL GOES FROM LOWER LEFT TO UPPER RIGHT
theUpperHulIPoints = theDictionary.Get(theXList.Get(0)) ® START WITH LEFT-MOST POINTS
if (theUpperHullPoints.Count > 2) then
theUpperHullPoints = {theUpperHullPoints.Get(0), theUpperHullPoints.Get(theUpperHullPoints.Count-1)}
end

* HAVE TO CHECK FOR RIGHT-HAND TURN (CLOCKWISE). THIS CAN BE COMPUTED BY CHECKING THE SIGN OF THE DETERMINANT OF

|
- 11 px pY | WHERE THE THREE POINTS ARE ORDERED (p.q,r).
) I
) D=11 a0 a | | ABC]
- | | DETERMINANT OF |DEF| = (AEI)-(AFH)-(BDI)+(BFG)+(CDH)-(CEG)
. | 1
I

recy ry I IGHI]

BECAUSE OF OUR COLUMN OF 1 VALUES, THIS CAN BE REDUCED TO
ED-(FH)-BD+(BF)+(CH)-(CE)

OR @CAr(y)-@MMre-eOOr(YN+(PEIAI+(PIr(x))-(rax))

" SOURCE: M. de Berg, M. van Dreveld, M. Overmars and O. Schwarzkopf. 1998. Computational Geometry,
b Algorithms and Applications (2nd. Edition) Springer, p. 16

" GET UPPER HULL
av.ShowMsg(''Generating Upper Convex Hull...'™)

theCounter = theUpperHullPoints.Count + 1
theCount = theXList.Count - 1

for each anlndex in 1..(theXList.Count-1)

theCounter = theCounter+1
av.SetStatus((theCounter/theCount)*100)

107

theShortList = theDictionary.Get(theXList.Get(anlndex))
theRPoint = theShortList.Get(theShortList.Count-1)
theUpperHul IPoints.Add(theRPoint)

while ((theUpperHullPoints.Count > 2) and
(CheckClockwise.Dolt({theUpperHullPoints.Get(theUpperHulIPoints.Count-3),
theUpperHulIPoints.Get(theUpperHul IPoints.Count-2), theRPoint}).Not))
theUpperHul IPoints.Remove(theUpperHul IPoints.Count-2)
end
end

" GET LOWER HULL
av.ShowMsg(*'Generating Lower Convex Hull...'™)

theLowerHulIPoints = {}
thelLowerHul IStartList = theDictionary.Get(theXList.Get(theXList.Count-1))
if (theLowerHullStartList.Count > 1) then
theLowerHulIPoints = {theLowerHullStartList.Get(theLowerHullStartList.Count-1), theLowerHullStartList.Get(0)}
else
theLowerHul IPoints = theLowerHullStartList
end

theCounter = 2
theCount = theXList.Count - 1

for each anlndex in (theXList.Count-2)..0 by -1

theCounter = theCounter+1
av.SetStatus((theCounter/theCount)*100)

theRPoint = theDictionary.Get(theXList.Get(anlndex)) .Get(0)
thelLowerHul IPoints.Add(theRPoint)

while ((theLowerHullPoints.Count > 2) and
(CheckClockwise.Dolt({theLowerHullPoints.Get(theLowerHulIPoints.Count-3),
theLowerHul IPoints.Get(theLowerHullIPoints._Count-2), theRPoint}).Not))
theLowerHul IPoints.Remove(theLowerHul IPoints.Count-2)
end
end

theLowerHul IPoints.Remove(0)

theLowerHul IPoints.Remove(theLowerHulIPoints.Count-1)
AllPoints = theUpperHullPoints+theLowerHulIPoints
thePoly = Polygon._Make({AllPoints})

else
thePoly = "Insufficient Unique points available._."
end

return thePoly

108

“Check if line segments cross or touch” script:

® Jennessent.CalcLinelntersect
" Jenness Enterprises <www.jennessent.com>

" ADAPTED FROM ALGORITHMS IN Cormen, Thomas H.;

® Ronald L.; and Stein, Clifford.
" Massachusetts Institute of Technology Press.

INTERSECT

Leiserson, Charles E.; Rivest,

2001. Introduction to Algorithms, 2nd. Ed.

2 IF LINES DO NOT INTERSECT
LinelPointl = self.Get(0) " P1
LinelPoint2 = self.Get(1) " P2
Line2Pointl = self.Get(2) " P3
Line2Point2 = self.Get(3) " P4
thellX = LinelPointl.GetX
thellY = LinelPointl.GetY
thel2X = LinelPoint2.GetX
thel2Y = LinelPoint2.GetY
the21X = Line2Pointl.GetX
the2lY = Line2Pointl.GetY
the22X = Line2Point2.GetX
the22Y = Line2Point2.GetY
theDirl = (the22X * (thellY - the2lY)) + (the22Y * (the2lX -
theDir2 = (the22X * (thel2Y - the2l1Y)) + (the22Y * (the2l1X -
theDir3 = (thel2X * (the2lY - thellY)) + (thel2Y * (thellX -
theDir4 = (thel2X * (the22Y - thellY)) + (thel2Y * (thellX -
it (((CtheDirl > 0) and (theDir2 < 0)) or ((theDirl < 0) and
(((theDir3 > 0) and (theDir4 < 0)) or ((theDir3 < 0) and
Return O
elseif ((theDirl = 0) and (the2lX.Min(the22X) <= thellX) and
(the21Y.Min(the22Y) <= thellY) and
Return 1
elseif ((theDir2 = 0) and (the2lX.Min(the22X) <= thel2X) and
(the21Y_Min(the22Y) <= thel2Y) and
Return 1
elseif ((theDir3 = 0) and (thellX.Min(thel2X) <= the21X) and
(thellY _Min(thel2Y) <= the2lY) and
Return 1
elseif ((theDir4 = 0) and (thellX.Min(thel2X) <= the22X) and
(thellY.Min(the22Y) <= the22Y) and

Return 1

the11X))
the12X))
the21X))
the22X))

(theDir2
(theDir4

(thellX
(thellY

(the12X
(the12Y

(the21X
(the21Y

(the22X
(the22y

>
>

<=
<=

<=
<=

<=
<=

<=
<=

109

GIVEN 4 POINTS, REPRESENTING START AND END OF LINE 1, AND START AND END OF LINE 2
RETURNS O IF LINES
1 IF POINT FROM ONE LINE SITS ON THE OTHER LINE

((the21X)*(thellY)) + ((the2lY)*(thellX))
((the21X)*(thel2Y)) + ((the2lY)*(thel2X))
((thellX)*(the21Y)) + ((thellY)*(the21X))
((thel1lX)*(the22Y)) + ((thellY)*(the22X))
0))) and

0)))) then

the21X_.Max(the22X)) and

the2lY.

the21X.
the2lY.

thellX.
_Max(thel2Y))) then

thellY

thellX.
thellY.

Max(the22Y))) then

Max(the22X)) and
Max(the22Y))) then

Max(thel2X)) and

Max(thel2X)) and
Max(thel2Y))) then

else

R
end

eturn 2

VB Code Generated:

Sample Resize Anchor Code, to insert into Load subroutine:

P
Pri

UT IN GENERAL DECLARATIONS SECTION
vate Anchors As AnchorObjectList

Set Anchors = New AnchorObjectList * Create
With Anchors

With .lItem(cmdCancel)

.SetAnchors enumSizeEnd, enumStartSize
End With
With .I1tem(cmdOK)

.SetAnchors enumSizeEnd, enumStartSize
End With
With _l1tem(cplncludelnTable)

.SetAnchors enumStartEnd, enumSizeEnd
End With
With .Iltem(IbxSumOptions)

.SetAnchors enumStartEnd, enumSizeEnd
End With
With .Iltem(cmdAdd)

.SetAnchors enumStartSize, enumSizeEnd
End With
With .ltem(cmdDelete)

.SetAnchors enumStartSize, enumSizeEnd
End With
With .ltem(cbxFieldlInclude)

.SetAnchors enumStartSize, enumSizeEnd
End With
With _l1tem(lblField)

.SetAnchors enumStartSize, enumSizeEnd
End With
With .ltem(cbxFieldSummarizeBy)

new

.SetAnchors enumStartSize, enumStartSize

End With
With . l1tem(IblSummarizeBy)

.SetAnchors enumStartSize, enumSizeEnd
End With
With .l1tem(1blTheme)

.SetAnchors enumNone, enumStartSize
End With
With .ltem(IblSummaryField)

.SetAnchors enumNone, enumStartSize

" Main anchor control object

instance

110

End With
With .ltem(IbxThemes)
.SetAnchors enumNone, enumStartEnd
End With
With . Iltem(lbxSummaryFields)
.SetAnchors enumNone, enumStartEnd
End With
With .I1tem(optAllValues)
.SetAnchors enumSizeEnd, enumStartSize
End With
With _ltem(optSelValues)
.SetAnchors enumSizeEnd, enumStartSize
End With
_.Form = Me " Set form reference (suggested to be last step)
End With

Anchor Class Module: Anchor.cls

* Anchors
Class: Anchor

" MODIFIED JANUARY 2006 TO ALLOW FOR DIFFERENT ANCHOR TYPES
* JEFF JENNESS (Jeffj@jennessent.com)

Option Explicit

Public Enum AnchorTypes
enumNone " Avenue Fastener (- , - ,
enumStart * Avenue Fastener (Left/Top, - , -)
enumStartSize * Avenue Fastener (Left/Top, Width/Height, -)
enumStartEnd * Avenue Fastener (Left/Top, - , Right/Bottom)
enumSize " Avenue Fastener (- , Width/Height, -)
enumSizeEnd * Avenue Fastener (- , Width/Height, Right/Bottom)
enumEnd Avenue Fastener (- , - , Right/Bottom)

"atPosition " Anchor position (Left/Top)
"atSize " Anchor size (Width/Height)
End Enum
Public AnchorType As AnchorTypes * Anchor type
Public Minvalue As Long " Minimum value

Public MaxValue As Long " Maximum value

Public Value As Single * Relative distance

111

Private Sub Class_Initialize()

Minvalue = -&H7FFFFFFF * Set to max lower limit
MaxValue = &H7FFFFFFF " Set to max upper limit
End Sub

AnchorObject Class Module: AnchorObject.cls

Anchors
Class: AnchorObject

" MODIFIED JANUARY 2006 TO ALLOW FOR DIFFERENT ANCHOR TYPES
* JEFF JENNESS (jeffj@jennessent.com)

Option Explicit

Private mCtl As Control " Control reference
Private mX As Anchor " X anchor
Private mY As Anchor ® Y anchor
Private mX2 As Anchor " X2 anchor
Private mY2 As Anchor " Y2 anchor

Private mWidth As Anchor ® Width anchor
Private mHeight As Anchor * Height anchor

Public Property Let Control(vData As Control)
Set mCtl = vData " Set reference

End Property

Public Property Get Control() As Control
Set Control = mCtl * Return reference

End Property

Public Property Get X() As Anchor
Set X = mX " Return X anchor
End Property

Public Property Get Y() As Anchor
Set Y = mY " Return Y anchor
End Property

Public Property Get X2() As Anchor
Set X2 = mX2 " Return X anchor
End Property

Public Property Get Y2() As Anchor
Set Y2 = mY2 " Return Y anchor
End Property

Public Sub SetAnchors(Optional ByVal XType As AnchorTypes, Optional ByVal YType As AnchorTypes)
X.AnchorType = XType " Set X anchor type

112

Select Case XType " X anchor
Case enumNone * Avenue Fastener (- , - , =)
mX.Value = mCtl.Left / mCtl.Container._Width
mWidth.Value = mCtl_Width / mCtl_Container._Width
Case enumStart * Avenue Fastener (Left, - , -) DON"T ADJUST X AT ALL!
mX.Value = mCtl.Left
mWidth.Value = (mCtl.Width / mCtl.Container._Width)
Debug.Print mCtl_Width
Debug.Print mCtl.Container._Width
Debug.Print (mCtl._Width / mCtl._Container.Width)
Debug.Print mWidth.Value
Case enumStartSize * Avenue Fastener (Left, Width/, -)
mX.Value = mCtl.Left
mWidth.Value = mCtl._Width
Case enumStartEnd * Avenue Fastener (Left, - , Right)
mX.Value = mCtl.Left
mWidth.Value = mCtl._Container.Width - mCtl.Width
Case enumSize * Avenue Fastener (- , Width, -)
mX.Value = ((mCtl.Left + (mCtl.Width / 2)) / mCtl.Container._.Width)
mX2.Value = mCtl_Width 7/ 2
mWidth.Value = mCtl_Width
Case enumSizeEnd * Avenue Fastener (- , Width, Right)
mX.Value = mCtl.Container.Width - mCtl.Left
mWidth.Value = mCtl_Width
Case enumknd * Avenue Fastener (- , - , Right)
mX.Value = mCtl.Width / mCtl.Container._Width
mX2.Value = mCtl.Container_.Width - mCtl_Width - mCtl.Left
mWidth.Value = mCtl._Width / mCtl_Container.Width
End Select
Y.AnchorType = YType " Set Y anchor type
Select Case YType " Y anchor
Case enumNone * Avenue Fastener (- , - , -)
mY.Value = mCtl.Top /7 mCtl.Container.Height
mHeight.Value = mCtl.Height /7 mCtl.Container.Height
Case enumStart * Avenue Fastener (Top, - , -) DON"T ADJUST Y AT ALL!
mY.Value = mCtl.Top
mHeight.Value = mCtl_Height / mCtl.Container_Height
Case enumStartSize * Avenue Fastener (Top, Height, -)
mY.Value = mCtl.Top
Case enumStartEnd " Avenue Fastener (Top, - , Bottom)
mY.Value = mCtl.Top
mHeight.Value = mCtl.Container.Height - mCtl.Height
Case enumSize " Avenue Fastener (- , Height, -)
mY.Value = ((mCtl.Top + (mCtl_.Height / 2)) / mCtl._Container.Height)
mY2.Value = mCtl.Height /7 2

Case enumSizeEnd " Avenue Fastener (- , Height, Bottom)
mY.Value = mCtl.Container.Height - mCtl.Top
Case enumknd " Avenue Fastener (- , - , Bottom)

mY.Value = mCtl.Height /7 mCtl.Container.Height
mY2.Value = mCtl.Container.Height - mCtl.Height - mCtl.Top
mHeight.Value = mCtl.Height /7 mCtl.Container.Height

113

End Select
Select Case YType " Y anchor
Case atPosition " Get position

mY.Value = mCtl.Container._Height - mCtl.Top " Control®s top relative to form®s bottom

Case atSize " Get size

mY.Value = mCtl.Container.Height - mCtl._Height = Control®s bottom

End Select

End Sub

Public Sub DoAnchors()

On Error Resume Next * Ignore errors
Select Case mX.AnchorType * X anchor

Case enumNone * Avenue Fastener (- , - , -)
mCtl.Left = mCtl.Container.Width * mX.Value
mCtl _Width = mCtl.Container.Width * mWidth.Value
IT mCtl.Left < mX_MinValue Then mCtl.Left = mX_MinValue
IT mCtl.Left > mX.MaxValue Then mCtl.Left mX.MaxValue

mCtl.Left = mX.Value
mCtl.Width = mCtl.Container _Width * mWidth.Value

IT mCtl.Left > mX.MaxValue Then mCtl.Left =
Case enumStartSize * Avenue Fastener (Left, Width, -)
mCtl.Left = mX.Value
IT mCtl.Left < mX_MinvValue Then mCtl.Left = mX_MinValue
IT mCtl.Left > mX.MaxValue Then mCtl.Left = mX.MaxValue
Case enumStartEnd * Avenue Fastener (Left, - , Right)
mCtl.Left = mX.Value
mCtl.Width = mCtl.Container _Width - mWidth.Value
IT mCtl.Left < mX.MinValue Then mCtl.Left = mX.MinValue
IT mCtl.Left > mX_MaxValue Then mCtl.Left = mX.MaxValue
Case enumSize * Avenue Fastener (- , Width, -)
mCtl.Left = (mCtl.Container.Width * mX.Value) - mX2.Value
IT mCtl._.Left < mX_MinValue Then mCtl.Left = mX.MinValue
IT mCtl.Left > mX_MaxValue Then mCtl.Left = mX.MaxValue
Case enumSizeEnd " Avenue Fastener (- , Width, Right)
mCtl.Left = mCtl.Container.Width - mX.Value
IT mCtl.Left < mX.MinValue Then mCtl.Left mX.MinValue
IT mCtl._Left > mX.MaxValue Then mCtl.Left mX.MaxValue
Case enumkEnd " Avenue Fastener (- , - , Right)

mCtl._.Left = mCtl.Container._Width - (mCtl.Container_Width *

mCtl .Width = mCtl.Container.Width * mWidth.Value
IT mCtl.Left < mX_MinvValue Then mCtl.Left = mX_MinValue
IT mCtl.Left > mX_MaxValue Then mCtl.Left = mX_.MaxValue

End Select
Select Case mY.AnchorType * Y anchor

Case enumNone * Avenue Fastener (- , - , -)
mCtl_.Top = mCtl.Container._.Height * mY._Value
mCtl _Height = mCtl.Container.Height * mHeight.Value
IT mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue *
If mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue *

relative to form"s bottom

" Lower limit
" Upper
Case enumStart * Avenue Fastener (Left, - , -) DON®T ADJUST

limit
Y AT ALL!

Lower limit

Upper lim

Lower
Upper

Lower
Upper

Lower
Upper

Lower limit

Upper

mX.Value) - mX2.Value

" Lower limit
" Upper limit

Lower limit
Upper limit

114

Case enumStart * Avenue Fastener (Top, - , -) DON"T ADJUST Y AT ALL!
- mCtl.Top = mY.Value

mCtl _Height = mCtl._Container.Height * mHeight.Value
- IT mCtl.Top < mY_MinValue Then mCtl.Top = mY.MinValue " Lower limit
- IT mCtl.Top > mY._MaxValue Then mCtl.Top = mY.MaxValue = Upper limit
Case enumStartSize * Avenue Fastener (Top, Height, -)
- mCtl.Top = mY.Value
- IT mCtl.Top < mY_MinValue Then mCtl.Top = mY.MinValue " Lower limit
b IT mCtl.Top > mY._MaxValue Then mCtl.Top = mY.MaxValue = Upper limit
Case enumStartEnd * Avenue Fastener (Top, - , Bottom)
- mCtl.Top = mY.Value
mCtl _Height = mCtl._Container.Height - mHeight.Value
- IT mCtl.Top < mY_MinValue Then mCtl.Top = mY.MinValue " Lower limit
- ITf mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ~ Upper limit
Case enumSize " Avenue Fastener (- , Height, -)
mCtl.Top = (mCtl.Container.Height * mY._.Value) - mY2._.Value
- IT mCtl.Top < mY_MinValue Then mCtl.Top = mY.MinValue * Lower limit
- ITf mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue ~ Upper limit
Case enumSizeEnd * Avenue Fastener (- , Height, Bottom)
mCtl.Top = mCtl.Container._.Height - mY.Value
- IT mCtl.Top < mY_MinValue Then mCtl.Top = mY.MinValue * Lower limit
- IT mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue * Upper limit
Case enumEnd * Avenue Fastener (- , - , Bottom)

mCtl.Top = mCtl.Container._Height - (mCtl.Container_Height * mY.Value) - mY2.Value
mCtl _Height = mCtl.Container.Height * mHeight.Value

- IT mCtl.Top < mY.MinValue Then mCtl.Top = mY.MinValue * Lower limit
b ITf mCtl.Top > mY.MaxValue Then mCtl.Top = mY.MaxValue * Upper limit
End Select
On Error GoTo O * Stop ignoring errors
End Sub

Private Sub Class_Initialize()

Set mX = New Anchor " Create new anchor instance
Set mY = New Anchor " Create new anchor instance
Set mX2 = New Anchor " Create new anchor instance
Set mY2 = New Anchor " Create new anchor instance

Set mWidth = New Anchor * Create new anchor instance
Set mHeight = New Anchor * Create new anchor instance

End Sub

Private Sub Class_Terminate()
Set mX = Nothing " Discard anchor instance
Set mY = Nothing " Discard anchor instance
Set mX2 = Nothing * Discard anchor instance
Set mY2 = Nothing * Discard anchor instance

Set mWidth = Nothing " Discard anchor instance
Set mHeight = Nothing * Discard anchor instance
End Sub

AnchorObijectList Class Module: AnchorObjectList.cls

115

Anchors
" Class: AnchorObjectList

" MODIFIED JANUARY 2006 TO ALLOW FOR DIFFERENT ANCHOR TYPES
* JEFF JENNESS (jJeffj@jennessent.com)

Option Explicit
Private Declare Function LockWindowUpdate Lib "user32" (ByVvVal hwndLock As Long) As Long

Private WithEvents mForm As Form " Form reference
Private mCol As Collection ~ Item collection

Public Property Let Form(vData As Form)
Set mForm = vData " Set reference
End Property
Public Property Get Form() As Form
Set Form = mForm " Return reference
End Property

Public Function Count() As Long
Count = mCol.Count * Return anchor collection count
End Function

Public Function Item(Control As Control) As AnchorObject
Dim Ildx As Long

11dx = IndexOf(Control) * Get position in item collection
IT 1ldx = 0 Then * If no item was found...
Set Item = New AnchorObject " ...create a new item

Item.Control = Control " Set reference
mCol .Add Item " Add item to collection
Else
Set Item = mCol (IndexOf(Control)) ~ Return item from collection
End If
End Function

Public Function IndexOf(Control As Control) As Long
Dim 1 As Long
IT mCol.Count > 0 Then " If there are any items...
For I = 1 To mCol.Count * ...loop through them
IT mCol(l) Is Control Then * If the refrences match...
IndexOf = 1 " ___return its position
Exit For * Stop looping
End If
Next
End If

116

End Function

Public Sub Remove(Control As Control)
mCol _.Remove IndexOf(Control) " Remove item from collection
End Sub

Public Sub SetAnchors()
Dim oAO As AnchorObject
For Each oAO In mCol * Loop through items
0AO.SetAnchors " Set both anchors
Next
End Sub

Public Sub DoAnchors()
Dim oAO As AnchorObject
IT Not (mForm Is Nothing) Then Call LockWindowUpdate(mForm.hWnd) * Lock repainting
For Each oAO In mCol * Loop through items
0AO.DoAnchors " Do both anchors
Next
Call LockWindowUpdate(0) ~ Unlock repainting
End Sub

Private Sub mForm_Resize()
Me.DoAnchors * Do all anchors
End Sub

Private Sub Class_Initialize()
Set mCol = New Collection ~ Create new collection
End Sub

Private Sub Class_Terminate()

Set mCol = Nothing " Discard collection
End Sub

117

	General Instructions:
	Project Buttons:
	Project Menu Items:
	Dialog Buttons:
	Dialog Menu Items:
	Script Buttons:
	Script Menu Items:
	Table Buttons:
	Table Menu Items:
	View Buttons:
	View Menu Items:
	 Modifications:
	Appendix: Scripts Generated
	Basic Dialog Scripts
	MultiChoice Scripts:
	Progress Meter Scripts
	Theme and ID Field Scripts:
	Report Dialog Scripts:
	List Dialog Scripts:
	Sortable List Scripts:
	Select Projection Scripts:
	Create VTab and FTab scripts:
	Generate Random Number scripts:
	Generate Normally-Distributed Random Number scripts:
	Generate ‘Insert Commas in Number’ scripts:
	Make Measurement Unit Dictionaries script:
	Geometric Function scripts:
	VB Code Generated:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

