
Landscape area is almost always presented in
terms of planimetric area,as if a square kilometer in
a mountainous area represents the same amount of
land area as a square kilometer in the plains.
Predictions of home ranges for wildlife species
generally use planimetric area even when describ-
ing mountain goats (Oreamnos americanus) and
pumas (Felis concolor). But if a species’ behavior
and population dynamics are functions of available
resources, and if those resources are spatially limit-
ed, I suggest assessing resources using surface area
of the landscape.

Surface area also is a basis for a useful measure of
landscape topographic roughness. The surface-area
ratio of any particular region on the landscape can

be calculated by dividing the surface area of that
region by the planimetric area. For example,
Bowden et al. (2003) found that ratio estimators of
Mexican spotted owl (Strix occidentalis lucida)
population size were more precise using a version
of this surface-area ratio than with planimetric area.

Many wildlife species are identified with topo-
graphic attributes, including the topographic
roughness or ruggedness of the landscape. For
example,Wakelyn (1987) found greater numbers of
Rocky Mountain bighorn sheep (Ovis canadensis
canadensis) in mountain ranges with higher meas-
ures of topographic relief, and Gionfriddo and
Krausman (1986) found that desert bighorn sheep
(O. c. mexicana) generally were found at or near
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Abstract There are many reasons to want to know the true surface area of the landscape, especially
in landscape analysis and studies of wildlife habitat.  Surface area provides a better esti-
mate of the land area available to an animal than planimetric area, and the ratio of this
surface area to planimetric area provides a useful measure of topographic roughness of
the landscape.  This paper describes a straightforward method of calculating surface-area
grids directly from digital elevation models (DEMs), by generating 8 3-dimensional trian-
gles connecting each cell centerpoint with the centerpoints of the 8 surrounding cells,
then calculating and summing the area of the portions of each triangle that lay within the
cell boundary.  This method tended to be slightly less accurate than using Triangulated
Irregular Networks (TINs) to generate surface-area statistics, especially when trying to
analyze areas enclosed by vector-based polygons (i.e., management units or study areas)
when there were few cells within the polygon.  Accuracy and precision increased rapid-
ly with increasing cell counts, however, and the calculated surface-area value was con-
sistently close to the TIN-based area value at cell counts above 250.  Raster-based analy-
ses offer several advantages that are difficult or impossible to achieve with TINs, includ-
ing neighborhood analysis, faster processing speed, and more consistent output.  Useful
derivative products such as surface-ratio grids are simple to calculate from surface-area
grids.  Finally, raster-formatted digital elevation data are widely and often freely available,
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the tops of steep slopes and close to steep, rocky
escape terrain. Warrick and Cypher (1998) found
that kit foxes (Vulpes macrotis mutica) near
Bakersfield, California were strongly associated
with low topographic ruggedness, and Wiggers and
Beasom (1986) found that Texas white-tailed deer
(Odocoileus virginianus texanus) appeared to
prefer areas with less topographic ruggedness than
desert mule deer (O. hermionus crooki).

A variety of methods exist in the literature for
measuring terrain irregularity. Hobson (1972)
described some early computational methods for
estimating surface area and discussed the concept of
surface-area ratios. Beasom (1983) described a
method for estimating land surface ruggedness
based on the intersections of sample points and con-
tour lines on a contour map, and Jenness (2000)
described a similar method based on measuring the
density of contour lines in an area. Mandelbrot
(1983:29,112–115) described the concept of a “frac-
tal dimension” in which the dimension of an irregu-
lar surface lies between 2 (representing a flat plain)
and 3 (representing a surface that goes through
every point within a volume). Calculating this frac-
tal dimension can be very challenging computation-
ally, and Polidori et al. (1991), Lam and De Cola
(1993), and Lorimer et al. (1994) discussed a variety
of methods for estimating the fractal dimension for a
landscape. An estimate of surface area also could be
derived from slope and aspect within a cell (Berry
2002), although Hodgson (1995) demonstrated how
most slope-aspect algorithms generate values reflect-
ing an area 1.6–2 times the size of the actual cell.
Surface-area values derived with this method would
therefore be unduly influenced by adjacent cells.

In this paper I demonstrate a straightforward
method for calculating the surface area of land-
scapes from digital elevation models (DEMs),which
are widely and freely available within the United
States and are becoming increasingly available
throughout the rest of the world (Jet Propulsion
Laboratory 2003, Gesch et al. 2002, United States
Geological Survey [USGS] 2002). I compared sur-
face-area values produced by this method with val-
ues produced with triangulated irregular networks
(TINs), which are 3-dimensional vector representa-
tions of a landscape created by connecting the
DEM elevation values into a continuous surface.
Unlike DEMs, these TINs are continuous vector sur-
faces and therefore can be precisely measured and
clipped. I also discuss advantages and disadvan-
tages of this method in comparison to using TINs.

Methods
Throughout this paper I refer to “grids,” and in

this case a grid is a specific type of geographic data
used by ArcInfo and ArcView. A grid essentially is a
raster image in which each pixel is referred to as a
“cell” and has a particular value associated with it.
For USGS DEMs, the cell value reflects the elevation
in meters of the central point in that cell.

The method described here derives surface
areas for a cell using elevation information from
that cell plus the 8 adjacent cells. For example,
given a sample elevation grid, this method would
calculate the surface area for the cell with eleva-
tion value “165” based on the elevation values of
that cell plus the 8 surrounding cells (Figure 1).
That central cell and its surrounding cells are pic-
tured in 3-dimensional space as a set of adjacent
columns, each rising as high as its specified eleva-
tion value (Figure 2b).

The 3-dimensional centerpoints of each of these
9 cells are used to calculate the Euclidian distance
between the focal cell’s centerpoint and the cen-
terpoints of each of the 8 surrounding cells. I use
the term “surface length” to highlight the 3-dimen-
sional character of this line; this is not the plani-
metric (horizontal) distance between cell center-
points. Next, calculate the surface lengths of the
lines that connect each of the 8 surrounding cells
with the ones adjacent to it to get the lengths of the
sides of the 8 triangles projected in 3-dimensional
space that all meet at the centerpoint of the central
cell (Figure 3b).

These surface lengths are calculated using the
Pythagorean theorem. Thus, for any 2 cell center-
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Figure 1.  Small Digital Elevation Model (DEM) with elevation
values overlaid on each cell.  Use a “moving window”
approach to calculate the surface area for each cell based on
the elevation from that cell plus the elevation values for the 8
surrounding cells.



points P and Q:

where

a=planimetric (horizontal) distance from P to Q,
b=difference in elevation between P and Q,
c=surface distance from P to Q.

Distance “b” is easy to calculate because it is sim-
ply the absolute difference between the 2 cell ele-
vation values. Distance “a” is even easier for the
cells directly to the north, east, south, and west,
because it is simply the length of the side of the
cells (L). For cells in diagonal directions, use the
Pythagorean theorem again to calculate that dis-
tance “a” = √2L2

.
Conducting these calculations for the central cell

plus the 8 adjacent cells produces the lengths for
the sides of the 8 triangles connecting the center of
the central cell to the centers of the 8 adjacent
cells. However, this leads to a minor complication
because these triangles extend past the cell bound-
ary and therefore represent an area larger than the
cell. The triangles must be trimmed to the cell

boundaries (Figure 4) by dividing all the length val-
ues by 2. This action is justified based on the Side-
Angle-Side similarity criterion for similar triangles
(Euclid 1956:204), which states that “If two trian-
gles have one angle equal to one angle and the
sides about the equal angles proportional, the tri-
angles will be equiangular and will have those
angles equal which the corresponding sides sub-
tend.” Each original triangle is “similar” to its corre-
sponding clipped triangle because the 2 sides
extending from the center cell in the original trian-
gle are exactly twice as long as the respective sides
in the clipped triangle, and the angles defined by
these 2 sides are the same in each triangle.
Therefore, the third side of the clipped triangle
must be exactly half as long as the corresponding
side of the original triangle.

Now when the lengths of the 3 sides are used to
calculate the area of the triangle, the 3 sides will
represent only the portion of the triangle that lies
within the cell boundaries. For example, using the
elevation DEM from Figure 1, and assuming that
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Figure 2.  Using the elevation values from Figure 1, cells A-I
represent cells necessary to calculate the surface area for the
central cell (a).  The cells can be visualized as a set of adjacent
columns each rising to their respective elevation values (b).

Figure 3.  Calculate 3-dimensional lengths between the center
of the central cell to the centers of the surrounding cells, and
the lengths between adjacent surrounding cells, to get the edge
lengths for the triangles I–VIII (a).  These triangles form a con-
tinuous surface over the 9 cells (b).



cells are 100 m on a side and that elevation values
are also in meters, begin by calculating the 16 tri-
angle edge lengths for the 8 3-dimensional triangles
radiating out from the central cell E (Figures 2a,
3a). Divide these surface lengths in half to get the
sides for triangles i–viii in Figure 4 (Table 1), and
use those lengths to determine the surface areas for
each triangle (Table 2). The area of a triangle given
the lengths of sides a, b, and c (Abramowitz and
Stegun 1972) is calculated as:

where

Finally, sum the 8 triangle area values to get final
surface-area value for the cell (10,280.48 m2 in this
example). This is 280 m2 more than planimetric
area of the cell (100 m × 100 m=10,000 m2).

Testing
I tested the accuracy of this method by generat-

ing a surface-area grid in which the cell value for
each cell reflected the surface area within that cell.
I then calculated total surface area within several
sets of polygons randomly distributed across the
landscape. I initially calculated polygonal surface
areas using the methods described in this paper
and then compared those with surface-area values
calculated via TINs. As 3D vector representations of
the landscape, these TINs provide a true continuous
surface based on the DEM elevation values. They
provide a good baseline to compare against
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Figure 4.  Surface area within the cell should only reflect the
areas of triangles i–viii (a), so trim the triangles to the cell
boundaries (b) by dividing all the triangle side lengths by 2.

Table 1.  Elevation values for the 9 cells in Figure 2a are used
to generate 16 surface lengths for the edges of the 8 triangles in
Figure 3a.  These surface lengths are divided in half to get the
edges for the 8 triangles in Figure 4a.

Surface
lengthTriangle Planimetric Elevation Surface (m)

edge length (m) difference (m) length (m) 2

AB
—

100.00 20 101.98 50.99
BC
—

100.00 15 101.12 50.56
DE
—

100.00 18 101.61 50.80
EF
—

100.00 20 101.98 50.99
GH
—

100.00 15 101.12 50.56
HI
—

100.00 38 106.98 53.49
AD
—

100.00 7 100.24 50.12
BE
—

100.00 5 100.12 50.06
CF
—

100.00 10 100.50 50.25
DG
—

100.00 8 100.32 50.16
EH
—

100.00 5 100.12 50.06
FI
—

100.00 23 102.61 51.31
EA
—

141.42 25 143.61 71.81
EC
—

141.42 10 141.77 70.89
EG
—

141.42 10 141.77 70.89
EI
—

141.42 43 147.81 73.91

Table 2. Calculations of true surface area for triangles i–viii
(Figure 4a) based on the 16 edge lengths from Table 1.

Triangle
Triangle Edges Edge lengths (m) area (m2)

i EA
—

, AB
—

, BE
—

71.81, 50.99, 50.06 1,276.22
ii BE

—
, BC

—
, EC

—
50.06, 50.56, 70.89 1,265.48

iii AD
—

, DE
—

, EA
—

50.12, 50.80, 71.81 1,272.95
iv EC

—
, CF

—
, EF

—
70.89, 50.25, 50.99 1,280.88

v DE
—

, DG
—

, EG
—

50.80, 50.16, 70.89 1,273.94
vi EF

—
, FI
—

, EI
—

50.99, 51.31, 73.91 1,306.88
vii EG

—
, EH

—
, GH

—
70.89, 50.06, 50.56 1,265.48

viii EH
—

, EI
—

, HI
—

50.06, 73.91, 53.49 1,338.64



because they can be pre-
cisely clipped to polygon
boundaries and measured.

I used elevation data
derived from 15 1o

× 1o

USGS 1:250,000-scale
DEMs downloaded from
the USGS EROS data cen-
ter website (USGS 2002).
I converted these DEMs
into ArcInfo grids and
combined them into a sin-
gle seamless grid using
the ArcView Spatial Ana-
lyst extension (Environ-
mental Systems Research
Institute [ESRI] 2000b),
and then projected the
final grid into the UTM
Zone 12 projection using
the “Reproject Grids”
extension (Quantitative
Decisions 1999). The pro-
jected grid contained
approximately 19 million
cells. This data set was
developed for use in a
separate study (Ganey et al. 1999), and as part of
that study I clipped the grid to an irregular-shaped
polygon covering mountainous central portions of
Arizona and western New Mexico (Figure 5).
Because of the clip, only about 6.8 million of these
cells contained elevation values. Cell dimensions
were approximately 92 m × 92 m, and the entire
region containing data covered 54,850 km2.

Generating polygons
Accuracy under ideal conditions. To generate

an accuracy baseline, I used polygons that con-
formed perfectly to cell edges. These polygons had
none of the edge-effect problems found in normal
irregularly shaped polygons, and therefore surface-
area calculations within them should give results as
close as possible to values determined by TIN-based
calculations. I generated 500 such rectangular poly-
gons with random lengths, widths, and locations
(Figure 6a) with the only provisos being that they
lay completely within the digital elevation model
and that their edges conform perfectly to the cell
edges. These rectangles ranged in area from 16 ha
(18 cells) to 33,661 ha (39,601 cells). I then classi-
fied them into 13 size classes based on cell counts

to see if there were any changes in accuracy as cell
counts increased.

Accuracy in real-world conditions. I used a real-
world example of 983 irregularly shaped water-
sheds originally developed for a separate research
effort (Ganey et al. 1999) (Figure 6b). These water-
sheds ranged in size from 1.7 ha (2 cells) up to
33,980 ha (39,579 cells). As with the rectangles, I
classified these polygons into 13 size classes based
on cell size.

Accuracy vs. area-to-edge ratio. Finally, to
examine accuracy as a function of the relation-
ship between area and edge length, I generated a
set of 700 elliptical polygons of random shape
and orientation, but all with an internal area
equal to approximately 215 ha (250 cells) (Figure
6c). I chose this size because, based on visual
examination of the data, it appeared to be at
approximately the upper boundary of the size
range at which most variation in accuracy seems
to occur, and therefore ellipses of this size should
be sensitive to edge-effect problems. Because of
the random arrangement of these ellipses, actual
cell counts ranged from 205–274 cells (x- = 251,
SD=4). Hence, I standardized area-to-edge ratio
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Figure 5.  Sample elevation data derived from 1o × 1o USGS 1:250,000-scale DEMs, contain-
ing approximately 6.8 million elevation values arrayed across the mountainous central por-
tions of Arizona and western New Mexico.



values based on the area and circumference of a
perfect circle (i.e., the shape with the maximum
possible area-to-edge ratio) with an area equiva-
lent to 250 cells. Each ellipse received an area-to-
edge value of:

By this method, a perfect circle would receive an
area-to-edge ratio of 1 while an infinitely long
ellipse would receive a value of 0. I suspected that
the accuracy would improve as the area-to-edge
ratios approached 1, so I generated these 700
ellipses such that there would be 70 ellipses in
each 0.1-unit range between 0 and 1 (i.e., 70
ellipses between 0 and 0.1,70 between 0.1 and 0.2,
etc.). This allowed me to assess accuracy over the
full range of possible area-to-edge values.

Generating surface areas per polygon
I used the ArcView 3.2a GIS package with Spatial

Analyst 2.0 (ESRI 2000a, b), plus the Surface Areas
and Ratios from Elevation Grid extension (Jenness
2001a), to automate the surface-area calculations
and to provide surface area statistics for the various
sets of test polygons.

To calculate TINs for each polygon, I used
ArcView with 3D Analyst (ESRI 1998) along with
the Surface Tools for Points, Lines and Polygons
extension (Jenness 2001b) to generate the poly-
gon statistics. When generating a TIN from a grid
data set, ArcView automatically selects the grid
cell centerpoints to use with the TIN based on a
vertical accuracy that you specify (ESRI 1997:32).
A vertical accuracy of “10,” for example, would 
produce a TIN surface model that was always
within 10 vertical map units of the grid cell cen-
ters. ArcView does not accept a vertical accuracy
of “0,” so I generated TINs with vertical accuracies
of 0.0001 m.

Statistical tests
I evaluated how close the grid-based surface-area

values for each polygon came to the TIN-based val-
ues by generating a ratio of the TIN-based value to
the grid-based value. By this method, a value of 1
indicates a perfect match. For each sample polygon
data set, I generated boxplots of these ratios within
each size class to examine the range of values
among size classes. I then calculated correlation
between the grid-based and TIN-based values using
Spearman’s rank correlation (rs) because my surface-
area values were not normally distributed. Finally, I
checked for any potential multiplicative or additive
biases by computing simple linear regression analy-
ses, forced through the origin, for each data set and
checking that the slope values were approximately
equal to 1. I used SPSS 9.0 (SPSS, Inc. 1998) for all
statistical analyses.
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Figure 6.  Three sets of sample polygons used to test the accu-
racy of this method:  a) 500 rectangular polygons randomly dis-
tributed across the landscape, whose boundaries exactly corre-
spond with cell edges in the DEM so that both grid-based and
TIN-based calculations of surface areas from these polygons
will reflect the exact same underlying surface; b) 983 water-
sheds distributed across the landscape, providing real-world
examples of irregularly shaped polygons; and c) 700 elliptical
polygons of random shape and orientation (some of which are
so elongated that they appear as lines), each with a size approx-
imately equal to 215 ha (250 cells), randomly distributed across
the landscape.



Results
The ratios of TIN-based

to grid-based surface-area
values for the 500 rectan-
gles tended to be very
close to 1 in all size class-
es (Figure 7), with slightly
more variation at the
lower size classes. The
TIN-based values tended
to be slightly but consis-
tently higher than the
grid-based values at cell
counts >2,500, with mean
ratio values ranging from
1 . 0 0 0 0 0 7 – 1 . 0 0 0 0 1 8 .
Regression through the
origin produced a slope
value of 1.000 (SE <
0.0001, 95% CI = 1.000–
1.000). The TIN-based sur-
face areas and the grid-
based surface areas were
highly correlated (rs >
0.999). The ratios among
the 983 watersheds also
tended to come close to 1 in all size classes (Figure
8). Again, the greatest variability was at the smallest
size class (cell count<250). TIN-based calculations
again were highly correlated with grid-based calcu-
lations (rs > 0.999). Re-
gression through the ori-
gin produced a slope
value of 1.000 (SE <
0.0001, 95% CI = 1.000–
1.000).

The set of 700 standard-
ized ellipses showed a
general trend toward
increasing accuracy and
precision as the area-to-
edge ratios approached 1,
with the range of values in
each class becoming pro-
gressively narrower (Fig-
ure 9). The median value
was close to 1 in all 
cases, but the correlation
between TIN-based and
grid-based calculations
among these smaller poly-

gons was lower than with the larger polygons (rs=
0.825). Regression through the origin produced a
slope value of 0.999 (SE = 0.001, 95% CI =
0.998–1.001).
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Figure 7.  Boxplots representing the ratio of TIN-based surface area over grid-based surface
area, for the 500 randomly distributed rectangles from Figure 6a.  The edges of these rectan-
gles perfectly correspond with the edges of the underlying grid cells.  Horizontal bars within
boxes represent the median, the tops and bottoms of the boxes represent the 75th and 25th
quantiles, and the whiskers represent the range excluding outliers and extremes.  Outliers (val-
ues >1.5 box lengths from box) are displayed with the symbol “o” and extremes (values >3
box lengths from the box ) are displayed with the symbol “*”.

Figure 8.  Boxplots representing the ratio of TIN-based surface area over grid-based surface
area, for the 983 watersheds from Figure 6b.



Discussion
Raster data sets such as DEMs and surface-area

grids are inherently less accurate and precise than
vector data sets such as TINs and polygons. The
most accurate measure of the surface area within a
polygon should include all the area within the poly-
gon and no more. Except in unusual circum-
stances, raster data sets do not meet this criterion
because cells in a raster data set do not sit perfect-
ly within polygon boundaries. Cells typically over-
lap the polygon edges, and GIS packages generally
consider cells to be “inside” a polygon only if the
cell center lies inside that polygon. Therefore,
raster representations of polygons have a stair-
stepped appearance, incorporating some areas out-
side the polygon and missing some areas inside.
Cells lying directly on the border always lie partly
inside and partly outside a polygon, but they are
always classified as being entirely inside or outside
the polygon. Therefore, the accuracy of a surface-
area measurement within a polygon is affected by
what proportion of the cells lie along the polygon
edge. This proportion typically decreases as the
number of cells increases, so accuracy should also
increase as the number of cells increases.

Although cell-based calculations are inherently
less precise and accurate than vector-based calcula-

tions, this method still
came extremely close to
duplicating results from
TIN-based surface-area
calculations. Accuracy
and precision increased as
the number of cells
increased. Under ideal
conditions in which the
test polygon edges corre-
sponded exactly to the
cell edges, this method
produced nearly identical
surface-area calculations.
The regression slope val-
ues and extremely low
standard error values
demonstrated that there
was no apparent bias in
this method. Surface-area
values computed using
this method did tend to
be slightly lower than
those computed with TIN-
based methods, but only

on the order of about 0.1–0.2 m2/ha, suggesting
that this method did well at duplicating TIN-based
values for grid cells that do not lie on polygon
boundaries.

Under conditions more analogous to real-world
situations, this method produced variable accura-
cies when there were <250 cells in a particular
polygon and good-to-excellent accuracy at cell
counts >250. At higher cell counts, the grid-based
values were almost identical to TIN-based values.

The analysis of the 983 watersheds showed con-
siderably more variability when the polygons con-
tained <250 grid cells (Figure 8), which is reason-
able considering the inherent imprecision in grid-
based processes. Polygons containing relatively
few grid cells would be most affected by errors
caused by grid cells lying on the polygon boundary.
The proportion of interior cells to edge cells
increased as overall cell counts increased, causing
more of the total polygon surface area to be derived
from the highly accurate interior cell values. This
trend was also illustrated in the calculations involv-
ing the 700 standardized ellipses, in which variabil-
ity steadily decreased as area-to-edge ratios
approached 1. The range of values in the 0.0–0.1
class was 4 times as large as the range in the 0.5–0.6
class and 7 times the range in the 0.9–1.0 class
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Figure 9.  Boxplots representing the ratio of TIN-based surface area over grid-based surface
area, for the 700 standardized ellipses from Figure 6c.  These ellipses have a constant internal
area but random shapes, orientations, and locations.  They are classified according to their
standardized area-to-edge ratio, where 0 reflects an infinitely stretched ellipse and 1 reflects a
perfect circle.



(Figure 9). The ellipses with area-to-edge ratios clos-
er to 1 had proportionally fewer edge cells, and
therefore more of the surface-area calculations
were based on accurate interior cell values.

Advantages and disadvantages of this
method over using TINs

Given that the testing and comparisons present-
ed in this paper assume that TIN-based calculations
are the most accurate, it is natural to wonder why
we should not just use TINs. TINs offer many advan-
tages over raster data sets for many aspects of sur-
face analysis. As vector objects, they are not affect-
ed by the edge-effect problems that are unavoidable
with raster-based methods and are considerably
more reliable and accurate over areas with relative-
ly low cell counts (Wang and Lo 1999). They gen-
erally take up much less space on the hard drive
than raster data, and they are often more aestheti-
cally pleasing to display (Mahdi et al. 1998).
However, the methods described in this paper offer
advantages that are difficult or impossible to
achieve with TINs.

Surface-area ratio grids. Surface-area grids may
easily be standardized into surface-area ratio grids
by dividing the surface-area value for each cell by
the planimetric area within that cell. These surface-
area ratio grids are useful as a measure of topo-
graphic roughness or ruggedness over an area and
conceivably could be used as friction or cost grids
for analysis of movement (such grids would steer
the predicted direction of movement based on the
topographic roughness of a cell). Because these
ratio grids are in raster format, they also lend them-
selves to neighborhood-based statistics as
described below.

Neighborhood analysis. In many cases we are
not interested in values of individual cells but
rather the values in a region around those cells.
This is especially common when we are interested
in phenomena over multiple spatial scales. For
example, neighborhood analysis can be applied to
surface-area grids to produce grids representing the
sum, maximum, minimum, mean, or standard devia-
tion of surface areas within neighborhoods of
increasing size surrounding each cell. These neigh-
borhoods can take on a variety of shapes, including
squares, doughnuts, wedges, and irregular shapes
(ESRI 1996:103). Neighborhood analysis is simple
with raster data but very difficult with TINs.

Faster processing speed. Given comparable res-
olutions, TINs take longer to generate and work

with than raster data sets. A process that takes min-
utes or seconds with a raster data set may take sev-
eral hours with a TIN.

More consistent and comparable output. TINs
often are generated according to a specified accu-
racy tolerance in which the surface must come
within a specific vertical distance of each elevation
point, meaning that a TIN surface rarely goes exact-
ly through all the base elevation points on the land-
scape. This also means that 2 TINs may have been
generated with different tolerances, and therefore
surface statistics derived from those TINs may not
be comparable. This is especially problematic
when the TINs are derived using whatever default
accuracy is suggested by the software, which gen-
erally varies from analysis to analysis based on the
range of elevation values in the DEM. The method
described in this paper, however, will always pro-
duce a surface-area grid that takes full advantage of
all the elevation points in the DEM. Surface-area sta-
tistics derived from any region may then be justifi-
ably compared with any other region.

Data is readily available. Digital elevation mod-
els, at least within the United States, are widely
available and often freely downloadable off the
Internet (Gesch et al.2002,USGS 2002). Worldwide
data from the 2000 Shuttle Radar Topography
Mission is steadily becoming available (Jet
Propulsion Laboratory 2003). TINs, however, are
rarely available (the author has never seen them
available on the Internet) and therefore must be
generated by the user.

More accurate proportions of available
resources. By weighting resource maps with under-
lying surface-area values, land managers and
researchers can generate more accurate extents
and proportions of resources within a particular
region. This is especially true if any of the resources
are especially associated with particularly steep or
flat areas.

The method described in this paper provides a
straightforward and accurate way to generate sur-
face-area values directly from a DEM. People who
use this method will face accuracy and precision
errors when they calculate surface areas within
vector-based polygons simply because of problems
inherent in extracting data from raster-based
sources (like grids and DEMs) and applying them to
precisely defined vector objects (like management
units and study areas). However, accuracy and pre-
cision problems diminish rapidly as cell counts
increase and become negligible for most purposes
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at cell counts >250. The calculations involved,
while most effectively computed in a GIS package,
also could easily be done in a spreadsheet. For
users of ESRI’s ArcView 3.x software with Spatial
Analyst, the author offers a free extension that
automates the process and directly produces sur-
face-area and surface-ratio grids from grid-formatted
DEMs. This extension may be downloaded from the
author’s website at http://www.jennessent.com/
arcview/surface_areas.htm or from the ESRI
ArcScripts site at http://arcscripts.esri.com/
details.asp?dbid=11697.
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